a2 United States Patent

Wolrich et al.

US009251377B2

US 9,251,377 B2
*Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

INSTRUCTIONS PROCESSORS, METHODS,
AND SYSTEMS TO PROCESS SECURE HASH
ALGORITHMS

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Gilbert M. Wolrich, Framingham, MA

(US); Kirk S. Yap, Framingham, MA

(US); Vinodh Gopal, Westborough, MA

(US); James D. Guilford,

Northborough, MA (US)

Assignee: Intel Corporation, Santa Clara, CA

(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 57 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/729,502

Filed: Dec. 28, 2012

Prior Publication Data

US 2014/0185793 Al Jul. 3, 2014

Int. Cl1.
HO4K 1/00
GO6F 21/72
HO4L 9/06
U.S. CL
CPC

(2006.01)
(2013.01)
(2006.01)

GOGF 21/72 (2013.01); HO4L 9/0643
(2013.01)

Field of Classification Search

CPC . GO6F 11/0727; GO6F 11/0751; GOGF 21/72;
HOAL 9/0643

USPC 380/28

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2/1981 Rubner
8/1994 Shah et al.

(Continued)

4,250,483 A
5,339,398 A

FOREIGN PATENT DOCUMENTS

EP
GB

0354774 A2 2/1990
1494750 A 12/1977

(Continued)
OTHER PUBLICATIONS

Docherty et al. (“Hardware Implementation of SHA-land SHA-2
Hash Functions”, 2011.*

(Continued)

Primary Examiner — Dant Shaifer Harriman
Assistant Examiner — Abiy Getachew
(74) Attorney, Agent, or Firm — Vecchia Patent Agent, LL.C

(57) ABSTRACT

A method of an aspect includes receiving an instruction. The
instruction indicates a first source of a first packed data
including state data elements a,, b,, e,, and f, for a current
round (i) of a secure hash algorithm 2 (SHA2) hash algorithm.
The instruction indicates a second source of a second packed
data. The first packed data has a width in bits that is less than
a combined width in bits of eight state data elements a,, b,, c,,
d, e, f, g, h, of the SHA2 hash algorithm. The method also
includes storing a result in a destination indicated by the
instruction in response to the instruction. The result includes
updated state data elements a,,, b, ,, e,,, and f,, thathave been
updated from the corresponding state data elements a,, b,, e,,
and £, by at least one round of the SHA?2 hash algorithm.

30 Claims, 26 Drawing Sheets

INSTRUCTION PROCESSING APPARATUS

INSTRUCTION SET ARCHITECTURE

209

INSTRUCTION
SET

207

ARCHITECTURAL
REGISTERS

210

INSTRUCTIONS
TO PROCESS
SHA2 ALGORITHMS

08

PACKED DATA
REGISTERS

211

SHA2
EXECUTION LOGIC
212




US 9,251,377 B2
Page 2

(56)

5,608,801
5,920,900
5,960,434
6,067,547
RE37,178
6,226,710
6,260,055
6,307,955
6,360,218
6,470,329
6,539,373
6,578,131
6,594,665
6,631,419
6,952,770
7,047,394
7,073,059
7,165,135
7,240,203
7,373,514
7,599,489
7,684,563
7,725,624
7,743,235
8,020,142
8,073,892
8,255,703
8,316,191
8,504,802
8,634,550
8,838,997
2002/0032551
2002/0184498
2003/0172252
2003/0185391
2005/0044134
2005/0089160
2009/0022307
2009/0310775
2010/0250966
2010/0268916
2012/0128149
2012/0257742

References Cited

U.S. PATENT DOCUMENTS

Al

* %

3/1997
7/1999
9/1999
5/2000
5/2001
5/2001
7/2001
10/2001
3/2002
10/2002
3/2003
6/2003
7/2003
10/2003
10/2005
5/2006
7/2006
1/2007
7/2007
5/2008
10/2009
3/2010
5/2010
6/2010
9/2011
12/2011
8/2012
11/2012
8/2013
1/2014
9/2014
3/2002
12/2002
9/2003
10/2003
2/2005
4/2005
1/2009
12/2009
9/2010
10/2010
5/2012
10/2012

Aiello et al.
Poole et al.
Schimmel
Douceur
Kingdon
Melchior
Sugeno et al.
Zank et al.
Zander et al.
Livschitz
Guha

Larson et al.
Sowa et al.
Greene

Mittal et al.
Van Dyke et al.
Worely, Jr. et al.
Christie et al.
Kessler et al.
Krueger et al.
Spracklen
Olson et al.
Feghali et al.
Wolrich et al.
Wolrich et al.
Feghali et al.
Crispin et al.
Wheeler et al.
Valentine et al.
Gueron et al.
Wolrich et al.
Zakiya

Qi

Henry et al.

Qi et al.
Krueger et al.
Crispin et al.
Torla et al.
Gueron et al.
Olsonetal. .....cccccvennenne 713/190
Hu et al. 712/41
Boersma et al.
Ebeid et al.

2012/0328097 Al  12/2012 Sheikh et al.

2013/0132737 Al 5/2013 Horsnell et al.

2013/0275718 Al* 10/2013 Uedaetal. ... 712/204
2014/0093069 Al 4/2014 Wolrich et al.

2014/0189368 Al 7/2014 Wolrich et al.

2014/0189369 Al 7/2014 Wolrich et al.

FOREIGN PATENT DOCUMENTS

KR 10-2010-0047592 A 4/2010

WO 03/090074 A2  10/2003

WO PCT/US2012/031632 10/2013

WO WO02013147877 Al 10/2013

WO 2014/105135 Al 7/2014
OTHER PUBLICATIONS

“Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority, or the
Declaration” mailing date, Sep. 27, 2013 pp. 10, in PCT/US2013/
046410.

Ricardo Chaves et al., “Cryptographic Hardware and Embedded
Systems” Ches 2006, Springer Berlin Heidelberg Copyright Holder,
2006, Print ISBN-978-3-540-46559-1, pp. 298-310.

Gutierrez, Carlos, et al., “Federal Information Processing Standards
Publication”, FIPS Pub 180-3; Secure Hash Standard (HSH), Infor-
mation Technology Laboratory National Institute of Standards Tech-
nology. Gaithersburg, MD 20899-8900, (Oct. 2008), 32 pages.
Deepakumara et al., “FPGA Implementation of MD5 Hash Algo-
rithm”, Electrical and Computer Engineering, Canadian Conference,
Toronto, Ontario, vol. 2, May 13-16, 2001, 6 pages.

FIPS Pub 180-3, “Secure Hash Standard (SHS)”, Federal Informa-
tion Processing Standards Publication, US Department of Com-
merce, Information Technology Laboratory, Oct. 2008, 32 pages.
Jarvinen et al., “Hardware Implementation Analysis of the MD5
Hash Algorithm”, Proceedings of the 38th Hawaii International Con-
ference on System Sciences 2005, 0-7695-2268-8/05(C) IEEE, 2005,
10 pages.

FIPS Pub 180-1, “Secure Hash Standard”, National Institute of Stan-
dards, Federal Information Processing Standards Publications, Apr.
17, 1995, 7 pages.

Office Action received for U.S. Appl. No. 13/843,141, mailed on
Aug. 15, 2014, 34 pages.

* cited by examiner



US 9,251,377 B2

Sheet 1 of 26

Feb. 2, 2016

U.S. Patent

LY HOId
L OId
SIN3WI13 vLva
31v18 03LYadn 1HOI3
504
4 A N

Ty | g | 1Yy | g | THp | Ty | g | I+

MTe 1 0 L
e <
M. D
mmpan Bl
ANNOY INTHIND vﬁu
¥04 LNdNI LNVLSNOD 1L = L s
MEJA i K NNOY Y04
B SNOILYY3dO
< Z¥HS 40 138
Tvv\_ VE Vﬁl_\ F—O -
4 I 1 I I ! L I T
aNNOY INIHEND i) 5]3 S L G T T
HO4 LNdNI FOVSSIN - - “ J
L0L
aNNOY INTHEND ¥OA 001

SINIWFT1I V1va 3LYLS LHOI3



U.S. Patent

Feb. 2, 2016 Sheet 2 of 26 US 9,251,377 B2
INSTRUCTION PROCESSING APPARATUS
INSTRUCTION SET ARCHITECTURE

INSTRUCTION ARCHITECTURAL

SET REGISTERS

207 210
INSTRUCTIONS PACKED DATA
TO PROCESS REGISTERS

SHA2 ALGORITHMS
211
208
SHA2
EXECUTION LOGIC

212




US 9,251,377 B2

Sheet 3 of 26

Feb. 2, 2016

U.S. Patent

)
b€

81 NOILYNILS3d

ZI€ Y1¥Q INVISNOD
(NY JOVSSIN HO/ANY
SININT13 v1va 31VIS

9I€ 304N0OS ONOO3S

§i€

1€ 304N0S LSYid

e
SHALSIOFY V1VA AIH0IVd

¢l

21901
NOILNO3X3
CYHS

Le

4300030

€ oIl

T

80¢
NOILONYLSNI

(/\ 90¢€

SNLYYVddY
ONISS3004d
NOILONYLSNI



U.S. Patent Feb. 2, 2016 Sheet 4 of 26 US 9,251,377 B2

FIG. 4
320
3\

RECEIVE INSTRUCTION INDICATING FIRST SOURCE OF FIRST PACKED

DATA INCLUDING STATE DATA ELEMENTS a;, b;, ¢;, f; FOR CURRENT
ROUND (i) OF SECURE HASH ALGORITHM 2 (SHA2) HASH ALGORITHM, AND
INSTRUCTION INDICATING SECOND SOURCE OF SECOND PACKED DATA, | 327

INWHICH FIRST PACKED DATA HAS WIDTH IN BITS LESS THAN COMBINED
WIDTH IN BITS OF EIGHT STATE DATA ELEMENTS OF SHA2 HASH ALGORITHM

v

STORE RESULT IN DESTINATION INDICATED BY INSTRUCTION

IN RESPONSE TO INSTRUCTION, RESULT INCLUDING UPDATED

STATE DATA ELEMENTS a;+, bi+, e;+, fi+ THAT HAVE BEEN ~322

UPDATED FROM STATE DATA ELEMENTS aj, b;, ej, f; BY AT
LEAST ONE ROUND OF SHA2 HASH ALGORITHM




U.S. Patent Feb. 2, 2016 Sheet 5 of 26 US 9,251,377 B2

FIG. 5
h=g [~534
g=f

AFTER TWO ROUNDS
e BECOMES g AND =e
f BECOMES /
e=d+ Ty
d=c ONLY ELEMENTS
e AND g ARE NEW
c=b EACH ROUND. ALL
OTHERS ARE MOVED
AFTER TWO ROUNDS OLD ELEMENTS

a BECOMES ¢ AND<X D =a
b BECOMES d J
a=T;+T>

FIG. 6

615 619

a b; & f = Cisn diip Si2 hi,




U.S. Patent Feb. 2, 2016 Sheet 6 of 26 US 9,251,377 B2

FIG. 7A
OPERATION OF SHA2
INPUT INSTRUCTION
/,»740
127 95 63 31 0
FIRST
SOURCE
Ci d; g h; 714A
127 95 63 31 0
SECOND
SOURCE
& fi Wi +Kan | WotKa) | 7164
SHA2
EXECUTION LOGIC
i 7124
127 95 63 31 0
. _ . <D
X =Wi+1) zh_ Wi+Kd) ES;%\/I ION
Ci d; +K+1 i
1 1 +gp ' |4Ches, £ )
' +>,(e)




U.S. Patent Feb. 2, 2016 Sheet 7 of 26 US 9,251,377 B2
FIG. 7B
OPERATION OF SHA2
TWO ROUND
INSTRUCTION
Vs 7308
127 95 63 31 0 Sg‘&g&
X = Wiis Y =WiytKa) | 7148
D, )
. : 1
d iK(IH) +Ch(e;, fi, gi,)
&i +Zl(ei)
127 95 63 31 0 SECOND
SOURCE
bi e; fl 716B
(=Cis2) (=di+2) (=gi+2) (=hio)
SHA2
EXECUTION LOGIC
i 7128
127 95 63 31 0
DESTINATION
7188

by Cir2 fiin




U.S. Patent Feb. 2, 2016 Sheet 8 of 26 US 9,251,377 B2

FIG. 8A
OPERATION OF SHA?2
INPUT INSTRUCTION
'/840
127 95 63 31 0 ot
SOURCE
8714A
S fl g hl
127 95 63 31 0
SECOND
SOURCE
* * Wa+rD)+Ka+) | WaotKa 816A
SHA2
EXECUTION LOGIC
812A
127 95 63 31 0
_ Y = Wi+K iy | DESTINATION
X =Wy | - OTRE | e1ea
e f. +ki+1) !
i i o +Ch(ei, £, @)
! +2, (&)




U.S. Patent Feb. 2, 2016 Sheet 9 of 26 US 9,251,377 B2

FIG. 8B
OPERATION OF SHA2
TWO ROUND
LO INSTRUCTION
[ 8308
127 95 63 31 .
X = Wii+1) j{h= WrtKe) | SOURCE
e f; +K(i+1) i
! ] +g +Ch(eb fi) gl)) \—J
' 2, (&)
127 95 63 31 0 SECOND
SOURCE
8168
H b; Ci d J
SHA2
EXECUTION LOGIC
8128
127 95 63 |, 31 0
DESTINATION
8188
Cir2 fin gi+2 hip S




U.S. Patent Feb. 2, 2016 Sheet 10 of 26 US 9,251,377 B2

FIG. 8C
OPERATION OF SHA2
TWO ROUND
HIGH INSTRUCTION
[8300
o N o 31 O First
SOURCE
814C
a; b; i . —
> N . 31 O Seconp
A Y =W tK) | SOURCE
f; X =Wt | 4 T e
C T 1
1 ; +I;(l+1) +Ch(e;, f;, gi,) —
i +3(ei)
SHA2
) EXECUTION LOGIC
S 8120
127 95 = T 0 ,
DESTINATION
818C
A4 biso Cit+2 dir2




U.S. Patent Feb. 2, 2016 Sheet 11 of 26 US 9,251,377 B2
FIG. 9
OPERATION OF
SHA2 TWO ROUND
INSTRUCTION
930
127 95 63 31 FIRST
SOURCE
914
¢ d; g h;
127 95 63 31 0 second
SOURCE
916
3 b; & fi 1
(=Cisp) (=di12) (=gi+2) hi)
127 95 63 31 0 THIRD
SOURCE
944
* * Wi+D+HKa+n | WitKa -
SHA?
EXECUTION LOGIC
912
127 95 63 31 0
DESTINATION
918
) bi2 €ir firn R




U.S. Patent Feb. 2, 2016 Sheet 12 of 26 US 9,251,377 B2
FIG. 10
OPERATION OF SHA2
512-BIT TWO ROUND
INSTRUCTION
10?<‘
255 191 127 63 0 FIRST
SOURCE
1014
Ci dl gi hl ‘—J
255 191 127 63 0 SECOND
SOURCE
S H b; & f; 1016
(%Cis2) (=di+2) (=gi) =hio)
255 191 127 63 0 THIRD
SOURCE
1044
* * Wa+nt+Karn | WartKad
SHA?2
EXECUTION LOGIC
1012
255 191 127 63 0
DESTINATION
1018
Qi+ b Civo fin S




U.S. Patent

Feb. 2, 2016 Sheet 13 of 26 US 9,251,377 B2
OPERATION OF
SHA2 FOUR ROUND FIG. 11
INSTRUCTION
11§E;
127 95 63 31 0 FIRST
SOURCE
1114
G d; gi h;
127 95 63 31 0 seconD
SOURCE
a; b; e; f, 1116
127 95 63 31 0 THIRD
SOURCE
1144
Wi3)+Ki+3) | Wi+2)+Ki+2) | Wi+nD+Kary | WatKad J
SHA2
EXECUTION LOGIC
1112
127 95 63 31 0  FIRST
DESPNAHON
ajip biso Ci+2 fin JBA
(%Cita) (=di+4) (=gi+4) (=his4)
127 95 63 31 0 SECOND
DESTINATION
1118B
Ai+g bis4 Cita fis ./




U.S. Patent

Feb. 2, 2016 Sheet 14 of 26 US 9,251,377 B2
OPERATION OF SHA2
512-BIT FOUR ROUND FIG. 12
INSTRUCTION
1230
FIRST
255 191 127 63 SOURCE/
DESTINATION
1214
Ci 4 gi h; I
o o7 . o
DESTINATION
1216
a b; & f; )
255 191 127 63 0 THRD
SOURCE
1244
Wi+3)+Ki+3) | Wir2ytKi+2) | Warn+Karn | - WirtKa J
SHA?2
EXECUTION LOGIC
1212
255 191 127 63 0  FIRST
DESTINATION
) bis €ir fiv2 12
(%Cisa) (=di14) (=8j+a) (=hirg)
255 191 127 63 0 SECOND
DESTINATION
1218B
Aj+4 bi4 Ci+q fira J




U.S. Patent Feb. 2, 2016 Sheet 15 of 26 US 9,251,377 B2
FIG. 13A
SS{TIRSJE/ SECOND
OPCODE SOURCE
DESTINATION SPECIFIER
1346A SPECIFIER
1348A 13504
FIG. 13B
)
FIRST THIRD |
SOURCE/ SECOND SOURCE |
OPCODE SOURCE SPECIFIER [
DESTINATION SPECIFIER !
13468 SPECIFIER (OPTIONAL) 1
|
13488 13508 13528 |
|
FIG. 13C
k
FIRST SECOND THIRD |
OPCODE SOURCE/ SOURCE/ SOURCE |
DESTINATION DESTINATION SPECIFIER 1
1346C SPECIFIER SPECIFIER (OPTIONAL) I
- |
1348C 1350C 1352C |
|




U.S. Patent Feb. 2, 2016 Sheet 16 of 26 US 9,251,377 B2

FIG. 14
PACKED DATA
REGISTERS
1454
\\ 512 BITS
A

r N
| zmmg ymmg xmmy
|
|
|
|
|
|
|
|
|
|
|
|
|
: ymm15 xmm15
|
! |
| 128 BITS 1
I § Y.
I Y l
| 256 BITS :
: .
| |
| |
| |
| |
| |
| |
| |
| ZMmg4 |



US 9,251,377 B2

Sheet 17 of 26

Feb. 2, 2016

U.S. Patent

0€51 7314 3d030d0 v 755
Q7314 NOILYY3dO 3Sve

Gesl T3l
ONIAQOINS
X14394dd

~-—"
|ALALALALATALATAL ] (][] ]wf[d]d] | #2
9551 ¥SSL  0ZGh ATAHAAMA - 9FSL v g051 X3
(2 &9 — O
p951 Q1314 HLAIM
Lasa | xx | [Alalafn] [ e | o3y | a[x]y INENERERT ovs) 01314
p¥Gl 01314 X3aNT 931SI03d VN0
TR G154 dYIW 30000
p.SL 01314 30090 1IN gsl "ol
5z61 41314
ONIOONT
X434d
- 0vSL a131
s . . 085! . _ dVN . Llvneod
¢hEb o 088k oSk _odzmoooaoémm_ 0zgl Q134 MAA | 3000d0 gl XTY |
_ _ ml‘v \ — A —A—
||||_ = ' =
| swmi .__H\ﬂ__ als _ /Y GOW .__>_>_>_>_>_>_>_> d|d|1]a]a]a]A a|x[ul v |
2961 | | I
Q1314 INGNBOV TSI
ol | veg [zssl orsl | wsh [zrs) 895} 0131 p95 471314 M
alale XXX SS W D34 |dONW N
3 I t 9 L 205} X1434d X3aA A
3LAE 9IS 3LA9 W/ GO V51 "9l4




US 9,251,377 B2

Sheet 18 of 26

Feb. 2, 2016

U.S. Patent

o

0y

s11g #9
G191 siolsiboy dSe S

0691 3114 ¥41S1934

1¥1d LNI d3axovd XWIA
m._._m_\rvw

)

7 [
_

_

_

_
d3asviv
_

_

_

|

siig o8
(d4z8X)
Gvol
91 '914 ERIER=EIRIDE Do) AR ERL AL 2015

Lewwiz
S119 96¢
A ™
ﬁw._._m 8Cl
Shwwix SlwwA
Owux OWWwA Swiwiz
L J
Y
slLiazis
0191 sJtolsIboy J10100A
S1ig#9 X 91

GZ9| sJelsibay esodind |e1ous9)

0091 FHNLOFLIHOYY H3ALSIOD3




US 9,251,377 B2

Sheet 19 of 26

Feb. 2, 2016

U.S. Patent

oIl |, V11)
< 1INN 1NN JHOYD Yiva | 0221 LIND
JHOVD ) AMOWAN
Al LIND 811 YLYa
X &
091 (SY43LSN1D NOILNDIXT
¥9/1 -
(S)LINN ()
$5300V LINN
AONAN NOILND3X3
A A
— _|I . - - — = _
|
8621 (S)LINN S3114 ¥3LSI9TY TWOISAHd I
IIIII C———A__ | I }
- 1 ) g2l 'ol4
| _9suL (SIINNYTINGIHOS | | ;NG |
iy ( oo ZhNanadlad
fm———
281 1INA _
| 0S4 1INN
— — HOLVOOTTY/INYNIS_ _ | INIONT NOILNDIX3
08l
_ 0P.} LINN 300030 _ LINM N3 LNOXA
1
[ 8¢/l HOL3A NOILONYISNI | /
3 0641 FHOD
9€/1 LINN 1L NOILONYLSNI ZeL) LINN
"L 7E/1 LINN FHOVD NOILONYLSNI NOILDIa3dd HONVYHE
_lllu_qlmwtl 8Ll bLLI I I |th|
| V2Ll [onmanvm|  3LEM 9Ll Qv3y AHOWIN  ThL) 0bh | 802b | 902k o Pl ol @0l
| LINNOD [ ‘ol AMOWAN | 3OV1S 3LN03X3 [V | 3INA3HOS ENINYNZY 00TIY[300030] ™) o =2 [HOL34
| L= mova em REISREN I I I it
V.l 'Old 004} ANITAdId 7~



US 9,251,377 B2

Sheet 20 of 26

Feb. 2, 2016

U.S. Patent

V9081

JHOVO V1vad L1

.

gc¢e8l Vveesl
143IANOD 1H43ANOD
OId3INNN O-3INNN
142°12
SHALSIOT
HO103dA
ey |
Y
0c8l yZs8l
A1ZZIMS 31VOIld3d

'ry

:

8¢8l

N1V J0L03A AdIM-91

Y

4

9¢s8l

co8l

MHOMLIN ONIH

'

¥08l
JHOVO

¢13dH1 40 1389NS TvOOT

H

908l

3IHOVO L1

A
Y

vi8l

dO103A

cl8l

SH3LSIO3d SH31SI193Y

dVIVOS

A

0L8l
1INN
JOL1D03aA

L

A

v vy

8081
1INN
dvIvOS

ﬁ

008l

SHALSIOTT MSVIN LM

g8l "Ol14

3d0D23Ad NOILONYHLSNI

V8l "ol



US 9,251,377 B2

Sheet 21 of 26

Feb. 2, 2016

U.S. Patent

9161 (S)LINN
¥3TI0YLNOD
snd

161 (S)LINN
¥3TI0YLNOD
AHOWAIN

0L6L LINN
IN3OV W3LSAS

d3LVAOIINI |

i

9061 (S)LINN FHOVD QIHVHS

- =1

1

I Nyogy || Vr061

L (s)Lnn | ".01 (S)LINN
_

! 3Hovo 3HOVO
Y206} 300

N¢06} 340D

61 "Old
8061 01901
3S0ddNnd
VI03dS _
/ooor H0SS3004d



U.S. Patent Feb. 2, 2016 Sheet 22 of 26 US 9,251,377 B2
2015
2000 \ - — — 17
| — — —/9_— 2010
r |_|_ PROCESSOR [— — T
| — /2095|
_|__/_—I 2045 -~ — | _— 2040
CONTROLLER
cO- | B 200 MEMORY
| PROCESSORl | GMCH 2090 |-
I |
|
2060
0 . 10H 2050 |
' |
I

FIG. 20



US 9,251,377 B2

Sheet 23 of 26

Feb. 2, 2016

U.S. Patent

v1va 12914
8¢le 0812
ANV 3009 | s3oa3a ISNOW
JOVHOLS V1va Lele WINOD e —"1 jauvogAa
H 021z 14 H
611z AT 11z 811z
¥0SSIN0Nd o/ olany $32I1A34 O/ 390149 sng
oz a — — — _
geLz—1 M| zerg—1 A _ 8e1e
8617 —| dd 0612 13SdIHO JEX L gaz _%mmmoomn_oo_
7612 — —_—
¥51Z 2612
—
ow_‘N d-d d-d dd d-d ON_\N
9812 — gg 7 — \ .o oz
8112
0512
— 2812 ez
ONI NI
oLz 2612
AMOWII AMOWAN
H0SSIO0Nd0D
MOSSIO0Md ¥0SSIV0Ud

.// 00lC



US 9,251,377 B2

Sheet 24 of 26

Feb. 2, 2016

U.S. Patent

vELe
AHOW3IN

7z 9l4
122
O/l AOVOT1
06l¢ 9617 —1 4/l
13SdIHO
g6l —1 dd v6lg —1 dd
¥51e L « 512 L «
>
@maL%aL \ \ rwtm
8/1e
05Le
— 812 e
10 1
H0SSIO0Hd H0SSIO0NHd

_ vl _

cele
AHONIN

| s3o1A3a 01

— e— e—

\ oz




US 9,251,377 B2

Sheet 25 of 26

Feb. 2, 2016

U.S. Patent

02£2 (S)0SS300Y8d0D

161 (S)LINN
0¥ee 0£€2 Y3ITI0HLINOD
LINN AV1dSId ¢tee LINN vAd LINN WYYS AHMOW3N
EINEREM
9161 (S)LINN
Y3ITI0HLINOD
sng ] 20¢¢ (SIIINN H,omzzoomﬁz_ |
| |
_ 9061 (S)LINN FHOVD Q3HVHS _
Pt
L1 nyost ! V06
" " va._._ZD _ " oo e va._._ZD
JHOVD
0164 LINN | ———d FHOVO
INJOV WILSAS _ zNo@m_mool_ V2061 3400
01£2 H0SS3D0Yd NOILYDITddY

/ 00€2

dIHO ¥ NO WALSAS

€¢ 'Old



US 9,251,377 B2

Sheet 26 of 26

Feb. 2, 2016

U.S. Patent

y0¥Z ¥371dINOD 98X

90¥Z 3A0J AYVYNIF 98X

20¥¢ 3OVNONVT 13AITHOIH

80¥¢ ¥311dINOD
13S NOILONYLSNI
JAILYNHELTY

ZL¥Z ¥ALYIANOD
NOILONMLSNI
¥ 'Ol 012 300D AdVYNIE
13S NOILONYLSNI
JUVMLIOS JAILYNYALTY
IYVYMAYYH
Y
e 1¥2 340D 13S NOILONYLSNI
3409 L3S NOILONYLSNI
96X ANG LS 98X NY LNOHLIM HOSSIO0Nd
1V HLIM H0S$S3004d




US 9,251,377 B2

1
INSTRUCTIONS PROCESSORS, METHODS,
AND SYSTEMS TO PROCESS SECURE HASH
ALGORITHMS

BACKGROUND

1. Field

Embodiments relate to instruction processing apparatus. In
particular, embodiments relate to instruction processing
apparatus and instructions to process secure hash algorithms.

2. Background Information

Secure Hash Standard (SHS) (FIPS PUB 180-3), a Federal
Information Processing Standards Publication, was pub-
lished by the National Institute of Standards and Technology,
in October, 2008. The SHS standard specifies secure hash
algorithms SHA-224, SHA-256, SHA-384, and SHA-512.
These four has algorithms are also collectively referred to
herein as SHA2 has algorithms, SHA2 algorithms, SHA2
hashes, or the like.

These SHA2 hash algorithms allow computing a message
digest representing a condensed representation of input data
referred to as a message. When a message with a length less
than 264 bits (for SHA-224 and SHA-256) or less than 27128
bits (for SHA-384 and SHA-512) is input to the hash algo-
rithm, a result called a message digest is output. The message
digest is also sometimes referred to as a digest or a hash. The
message digest is 224-bits for SHA-224, 256-bits for SHA-
256, 384-bits for SHA-384, or 512-bits for SHA-512. SHA-
224 and SHA-256 are based on a 32-bit word length. SHA-
384 and SHA-512 are based on a 64-bit word length.

The hash algorithms specified in this Standard are called
secure because, for a given algorithm, it is considered com-
putationally infeasible 1) to find a message that corresponds
to a given message digest, or 2) to find two different messages
that produce the same message digest. This means that any
change to a message will, with a very high probability, result
in a different message digest.

The SHA2 algorithms are widely used in electronic devices
for authentication, verification, identification, integrity
checking, security, or other purposes. They may be used for
various different purposes. One common use of the SHA2
algorithms is to verify the integrity of and/or detected changes
to messages. For example, an initial message digest may be
generated for a message, and then later another message
digest may be regenerated for the message and should be the
same as the initial message digest assuming the message itself
has not been changed. Other examples of applications of
secure hash functions include, but are not limited to, gener-
ating digital signatures, message authentication codes, veri-
fying the integrity of files or messages, identifying files or
data, and pseudorandom generation and key derivation.

FIG. 1 illustrates details of a single round of an SHA2
algorithm 100. A total of sixty-four rounds similar to the
round shown may be used to compute the final message
digest. Eight state words a,, b,, ¢;, d,, e, f;, g;, and h, 101 are
input to the round. The eight state words are also referred to in
the standard as the eight working variables. For SHA-224 and
SHA-256 each of these state words are 32-bits. For SHA-384
and SHA-512 each of these state words are 64-bits. Also input
to the round are a message input to the current round (i.e.,
W(1)) 102 and a constant input to the current round (i.e., K(i))
103. A set of SHA2 operations 104 are performed for each
round. The set of operations includes a number of modulo
additions (shown by the boxes with plus signs inside), and
evaluation of functions known as Ch, Z,, Maj, and Z,. There

10

15

20

25

30

35

40

45

50

55

60

65

2

is also a remapping of the state words. The output of the round
is eight updated state words a,, , by, ;. C;.1, diys €005 Ty
g..-andh,,  105.
The set of operations for each of the sixty-four rounds
include the following operations:
2Z,(a)=(a ROTR 2) XOR (a ROTR 13) XOR (a ROTR 22)
2,(e)=ROTR 6) XOR (e ROTR 11) XOR (e ROTR 25)
Maj(a, b, c)=(a AND b) XOR (a AND c) XOR (b AND ¢)
Ch(e, f, g)=(e AND f) XOR ((NOT ¢) AND g)
T,=h+Z,(e)+Ch(e, f, 2)+K,+W,
T,=2,(a)+Maj(a, b, ¢)
h=g
g=t

i+1° i+10 Vil Vivl?

a=T,+T,

In the above, “ROTR” designates a bitwise right rotate
operation by the number of bits its right, “XOR” designates a
logical exclusive OR operation, “AND” designates a logical
AND operation, “NOT” designates a logical NOT operation.
The rotation amounts are specific for SHA-256. Other SHA2
algorithms use different shift and rotate amounts.

As can be seen, each round of the SHA2 algorithms
involves a large number of operations. In addition, generating
the message digest involves sixty-four of such rounds. One
significant challenge is that conventionally implementing the
SHA2 algorithms involves executing a large number of
instructions on a processor. Commonly, each round of the
SHAZ2 algorithms may take from several to many instructions.
For example, in one possible implementation, within a round
separate instructions may be used to perform each of the
rotations, logical AND, XOR, and NOT operations, addi-
tions, etc. This, compounded with the fact that there are
sixty-four rounds, may tend to make the implementation of
the SHA?2 algorithms very computationally intensive and to
take a significant amount of time.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments of the invention. In the draw-
ings:

FIG. 1 illustrates details of a single round of a Secure Hash
Algorithm 2 (SHA2) hash algorithm.

FIG. 2 is a block diagram of an instruction processing
apparatus having an instruction set that includes one or more
instructions that are useful to perform one or more SHA2
algorithms.

FIG. 3 is a block diagram of an embodiment of an instruc-
tion processing apparatus having a SHA?2 execution logic that
is operable to execute at least one embodiment of an instruc-
tion useful to process an SHA2 secure hash algorithm.

FIG. 4 is a block flow diagram of an embodiment of a
method of processing an instruction useful for the SHA2
secure hash algorithm.

FIG. 5 illustrates a portion of a round of an SHA2 algo-
rithm.

FIG. 6 is a block diagram of an embodiment of a subset of
four state words or elements a, b, e, and f in a register.

FIG. 7A is a block diagram of an operation performed by a
first embodiment of a SHA?2 input instruction.



US 9,251,377 B2

3

FIG. 7B is a block diagram of an operation performed by an
embodiment of an SHA?2 two round instruction.

FIG. 8A is a block diagram of an operation performed by a
second embodiment of a SHA?2 input instruction.

FIG. 8B is a block diagram of an operation performed by an
embodiment of an SHA2 two round low update instruction.

FIG. 8Cis a block diagram of an operation performed by an
embodiment of an SHA2 two round high update instruction.

FIG. 9 is a block diagram of an operation performed by an
embodiment of an SHA2 128-bit two round instruction.

FIG. 10 is a block diagram of an operation performed by an
embodiment of an SHA2 256-bit two round instruction.

FIG. 11 is a block diagram of an operation performed by an
embodiment of an SHA2 128-bit four round instruction.

FIG. 12 is a block diagram of an operation performed by an
embodiment of an SHA2 512-bit four round instruction.

FIG. 13A-C are block diagrams of a suitable instruction
formats.

FIG. 14 is a block diagram of an example embodiment of a
suitable set of packed data registers.

FIG. 15A illustrates an exemplary AVX instruction format
including a VEX prefix, real opcode field, Mod R/M byte, SIB
byte, displacement field, and IMMS.

FIG. 15B illustrates which fields from FIG. 15A make up a
full opcode field and a base operation field.

FIG. 15C illustrates which fields from FIG. 15A make up a
register index field 1544.

FIG.16isablock diagram of a register architecture accord-
ing to one embodiment of the invention.

FIG. 17A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention.

FIG. 17B shows processor core including a front end unit
coupled to an execution engine unit, and both are coupled to
a memory unit.

FIG. 18A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
and with its local subset of the Level 2 (L.2) cache, according
to embodiments of the invention.

FIG. 18B is an expanded view of part of the processor core
in FIG. 18A according to embodiments of the invention.

FIG. 19 is a block diagram of a processor that may have
more than one core, may have an integrated memory control-
ler, and may have integrated graphics according to embodi-
ments of the invention.

FIG. 20, shown is a block diagram of a system in accor-
dance with one embodiment of the present invention.

FIG. 21, shown is a block diagram of a first more specific
exemplary system in accordance with an embodiment of the
present invention.

FIG. 22, shown is a block diagram of a second more spe-
cific exemplary system in accordance with an embodiment of
the present invention.

FIG. 23, shown is a block diagram of a SoC in accordance
with an embodiment of the present invention.

FIG. 24 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention.

DETAILED DESCRIPTION

Disclosed herein are instructions that are useful for per-
forming SHA2 hash algorithms (e.g., SHA-224, SHA-256,
SHA-384, and SHA-512), processors to execute the instruc-
tions, methods performed by the processors when processing

10

15

20

25

30

35

40

45

50

55

60

65

4

or executing the instructions, and systems incorporating one
or more processors to process or execute the instructions. In
the following description, numerous specific details are set
forth (e.g., specific instruction functionalities, data formats,
data arrangements within registers, instruction formats, pro-
cessor configurations, execution logic, microarchitectural
details, sequences of operations, and the like). However, it is
understood that embodiments of the invention may be prac-
ticed without these specific details. In other instances, well-
known circuits, structures and techniques have not been
shown in detail in order not to obscure the understanding of
this description.

FIG. 2 is a block diagram of an example embodiment of a
processor or other instruction processing apparatus 206 hav-
ing an instruction set 207 that includes one or more instruc-
tions 208 that are useful to perform one or more SHA2 algo-
rithms. The processor may be any of various complex
instruction set computing (CISC) processors, various
reduced instruction set computing (RISC) processors, vari-
ous very long instruction word (VLIW) processors, various
hybrids thereof, or other types of processors entirely. In some
embodiments, the processor may be a general-purpose pro-
cessor (e.g., of the type used in desktop, laptop, server, and
like computers). Alternatively, the processor may be a spe-
cial-purpose processor. Examples of suitable special-purpose
processors include, but are not limited to, cryptographic pro-
cessors, communications processors, network processors,
digital signal processors (DSPs), cryptographic co-proces-
sors, embedded processors, graphics processors, and control-
lers (e.g., microcontrollers), to name just a few examples.

The processor or apparatus has an instruction set architec-
ture (ISA) 209. The ISA represents a part of the architecture
of the processor related to programming and commonly
includes the native instructions, architectural registers, data
types, addressing modes, memory architecture, interrupt and
exception handling, and external input and output (1/0) of the
processor. The ISA is distinguished from the microarchitec-
ture, which generally represents the particular processor
design techniques selected to implement the ISA.

The ISA includes an instruction set 207. The instructions of
the instruction set represent macroinstructions (e.g., instruc-
tions provided to the processor for execution), as opposed to
microinstructions or micro-ops (e.g., those which result from
a decoder of the processor decoding macroinstructions). The
instruction set includes one or more instructions 208 that are
each useful to process perform one or more SHA2 algorithms.

The ISA also includes architecturally-visible registers 210.
The architectural registers generally represent on-die proces-
sor storage locations. The architectural registers may also be
referred to herein simply as registers. The phrases architec-
tural register, register file, and register are used herein to refer
to registers that are visible to the software and/or programmer
(e.g., software-visible) and/or the registers that are specified
by macroinstructions to identify operands. These registers are
contrasted to non-architectural or non-architecturally visible
registers in a given microarchitecture (e.g., temporary regis-
ters used by instructions, reorder buffers, retirement registers,
etc.). The illustrated registers include packed data registers
211 that are each operable to store packed, vector, or single
instruction multiple data (SIMD) data. The instruction(s) to
process the SHA2 algorithm(s) 208 may indicate source data
in, and indicate destinations where result data is to be stored
in, the packed data registers.

The processor or apparatus also includes SHA2 execution
logic 212. The SHA2 execution logic may include an execu-
tion unit, functional unit, circuit responsive to an instruction,



US 9,251,377 B2

5

or the like. The SHA2 execution logic is operable to execute
or process the instruction(s) 208.

FIG. 3 is a block diagram of an example embodiment of a
processor or other instruction processing apparatus 306 hav-
ing a SHA2 execution logic 312 that is operable to execute at
least one embodiment of an instruction 308 useful to process
an SHA?2 secure hash algorithm. In some embodiments, the
instruction processing apparatus may be a processor and/or
may be included in a processor. In some embodiments, the
instruction processing apparatus may be included in the appa-
ratus of FIG. 2, or else the instruction processing apparatus
306 may be included in a similar or different apparatus.

The apparatus 306 may receive the instruction 308. For
example, the instruction may be received from an instruction
fetch unit, an instruction queue, or a memory. The instruction
may represent a machine instruction, macroinstruction, or
control signal that is recognized by the apparatus and that
controls the apparatus to perform particular operations. The
instruction may explicitly specify (e.g., through bits or one or
more fields) or otherwise indicate (e.g., implicitly indicate) a
first source 314. The instruction may also explicitly specify or
otherwise indicate a second source 316. The instruction may
also explicitly specity or otherwise indicate a destination 318
(e.g., a destination storage location) where a result of the
instruction is to be stored. In some embodiments, one of the
first and second sources may be reused as the destination
(e.g., a source/destination field of the instruction may specity
a register used as a source and a destination).

The illustrated apparatus includes an instruction decode
unit or decoder 313. The decoder may receive and decode
higher-level machine instructions or macroinstructions and
output one or more lower-level micro-operations, micro-code
entry points, microinstructions, or other lower-level instruc-
tions or control signals that reflect and/or are derived from the
original higher-level instruction. The one or more lower-level
instructions or control signals may implement the operation
of the higher-level instruction through one or more lower-
level (e.g., circuit-level or hardware-level) operations. The
decoder may be implemented using various different mecha-
nisms including, but not limited to, microcode read only
memories (ROMs), look-up tables, hardware implementa-
tions, programmable logic arrays (PLAs), and other mecha-
nisms used to implement decoders known in the art.

In other embodiments, instead of having the decoder 313,
an instruction emulator, translator, morpher, interpreter, or
other instruction conversion logic may be used. Various dif-
ferent types of instruction conversion logic are known in the
arts and may be implemented in software, hardware, firm-
ware, or a combination thereof. The instruction conversion
logic may receive the instruction, emulate, translate, morph,
interpret, or otherwise convert the received instruction into
one or more corresponding derived instructions or control
signals. In still other embodiments, both instruction conver-
sion logic and a decoder may be used.

The apparatus also includes a set of architectural packed
data registers 311. The packed data registers may be imple-
mented in different ways in different microarchitectures
using well-known techniques, and are not limited to any
particular type of circuit. Various different types of registers
are suitable. Examples of suitable types of registers include,
but are not limited to, dedicated physical registers, dynami-
cally allocated physical registers using register renaming, and
combinations thereof. As shown, in some embodiments, the
first source 314, the second source 316, and the destination
318, may each be one of the packed data registers. Alterna-
tively, memory locations or other storage locations suitable
may be used for one or more of these

10

20

25

30

35

40

45

50

55

60

65

6

The SHA2 execution logic 312 is coupled with the packed
data registers 311 and with the decoder 313. The SHA2
execution logic may receive from the decoder one or more
micro-operations, micro-code entry points, microinstruc-
tions, other instructions, or other control signals, which
reflect, or are derived from, the instruction 308. The SHA2
execution logic may be operable, in response to and/or as a
result of the instruction 308 to store a packed data result 319
in the destination 318 specified or otherwise indicated by the
instruction. The SHA2 execution logic and/or the apparatus
may include specific or particular logic (e.g., circuitry or
other hardware potentially combined with firmware and/or
software) operable to execute and/or process the instruction,
and store the result in response to the instruction (e.g., in
response to one or more microinstructions or other control
signals derived from the instruction).

In some embodiments, the first source 314 may include a
first packed data 315 including state data elements a,, b;, e,,
and f, for a current round (i) of an SHA2 hash algorithm, and
the second source 316 may include a second packed data
(e.g., in various embodiments state data elements and/or mes-
sage and constant data). In some embodiments, the result 319
may include updated state data elements a,,, b,,, e,,, and f,,
that have been updated from the corresponding state data
elements a,, b;, e;, and f;, of the first source 314 by at least one
round of the SHA?2 hash algorithm. For example, the updated
state data element a,, may represent the corresponding start-
ing state data element a, for the current round updated by one
round of the SHA2 hash algorithm, the updated state data
element b,, may represent the corresponding starting state
data element b, updated by one round of the SHA2 hash
algorithm, and so on.

In some embodiments, the first packed data 315 may have
a width in bits that is less than a combined width in bits of the
eight state data elements (i.e., a,, b,, e,, and f,, and the other
four c,, d;, g, and h,) of the SHA2 hash algorithm. In some
embodiments, the width in bits of the first packed data may be
about half the combined width in bits of the eight state data
elements of the SHA2 hash algorithm. For example, in the
case of SHA-256, each of the eight state data elements may be
32-bits and the combined width in bits of the eight state data
elements may be 256-bits, while the first packed data may
have a width of only 128-bits (e.g., be stored in a 128-bit
register) and be able to hold only four of the eight 32-bit state
data elements (e.g., a,, b,, e,, and f,). As another example, in
the case of SHA-512, each of the eight state data elements
may be 64-bits and the combined width in bits of the eight
state data elements may be 512-bits, while the first packed
data may have a width of only 256-bits (e.g., be stored in a
256-bit register) and be able to hold only four of the eight
64-bit state data elements.

In some embodiments, the result may include updated state
data elements a,,,, b,,,, €,,,, and f,, , that have been updated
from the corresponding state data elements a,, b,, e,, and f, of
the first source by two rounds of the SHA2 hash algorithm. In
some embodiments, the result may include updated state data
elements a,, ,, and f; ,, that have been updated from the cor-
responding state data elements a,, b;, e;, and {; of the first
source by four rounds of the SHA2 hash algorithm. Specific
examples of these instructions will be described further
below.

In some embodiments, the instruction may specify two and
only two sources (i.e., not have a third source). In other
embodiments, the instruction may indicate a third source in
addition to the first and second sources (e.g., implicitly indi-
cate or explicitly specify the third source). Specific examples
of these instructions will be described further below.



US 9,251,377 B2

7

As will be explained further below, in some embodiments,
some of the processing of the SHA2 round may be imple-
mented outside of the confines of the execution of the instruc-
tion. For example, as will explained further below, in some
embodiments the calculation of X and’Y may be performed by
another instruction. As another example, in some embodi-
ments, calculation of message data and/or addition of mes-
sages and constants may be performed outside of the round.
In some embodiments, the execution of the instruction may
include performing the operations of the 2, function (e.g., (a;
ROTR 2) XOR (a, ROTR 13) XOR (a, ROTR 22) for SHA-
256) and/or the Maj function (e.g., (a; AND b,) XOR (a, AND
¢;) XOR (a;, AND c,) for SHA-256).

Advantageously, in some embodiments, a single instruc-
tion may be used to update four of the state data elements by
at least one round of the SHA2 algorithm. This may help to
significantly improve the efficiency and/or speed of imple-
menting the SHA2 algorithm.

To avoid obscuring the description, a relatively simple
apparatus 306 has been shown and described. In other
embodiments, the apparatus may optionally include other
components, such as, for example, an instruction fetch unit,
an instruction scheduling unit, a branch prediction unit,
instruction and data caches, instruction and data translation
lookaside bufters, prefetch buffers, microinstruction queues,
microinstruction sequencers, bus interface units, second or
higher level caches, a retirement unit, a register renaming
unit, other components included in processors, and various
combinations thereof. Embodiments may have multiple
cores, logical processors, or execution engines. An SHA2
execution logic operable to execute an embodiment of at least
one instruction disclosed herein may be included in at least
one of the cores, logical processors, or execution engines.
There are literally numerous different combinations/configu-
rations of such components in processors and the scope of the
invention is not limited to any such combination/configura-
tion.

FIG. 4 is a block flow diagram of an embodiment of a
method 320 of processing an instruction useful for the SHA2
secure hash algorithm. In various embodiments, the method
may be performed by a general-purpose processor, a special-
purpose processor (e.g., a cryptographic co-processor or
core), or other type of instruction processing apparatus. In
some embodiments, the method 320 may be performed by the
apparatus of either FIG. 2 and/or FIG. 3, or a similar appara-
tus. Alternatively, the method 320 may be performed by a
different apparatus. The components, features, and specific
optional details described herein for the apparatus also
optionally apply to the method 320 which may in embodi-
ments be performed by and/or with the apparatus. Moreover,
the apparatus of either FIG. 2 and/or FIG. 3 may perform the
same, similar or different operations and methods than those
of FIG. 4.

The method includes receiving the instruction, at block
321. In various aspects, the instruction may be received at a
processor, an instruction processing apparatus, or a portion
thereof (e.g., a decoder, instruction converter, etc.) from an
off-processor source (e.g., from a main memory, a disc, or a
bus or interconnect), or from an on-processor source (e.g.,
from an instruction cache).

In some embodiments, the instruction indicates a first
source of a first packed data including state data elements a,,
b,, e,, and f; for a current round (i) of the SHA2 hash algo-
rithm. The instruction also indicates a second source of a
second packed data. In some embodiments, the first packed

10

15

20

25

30

35

40

45

50

55

60

65

8

data may have a width in bits that is less than a combined
width in bits of the eight state data elements of the SHA2 hash
algorithm.

A result is stored in a destination that is specified or other-
wise indicated by the instruction in response to, as a result of,
and/or as specified by the instruction, at block 322. In some
embodiments, the result may include updated state data ele-
ments a,,, b,,, e, and f,, that have been updated from the
corresponding state data elements a,, b,, e,, and £, by at least
one round of the SHA2 hash algorithm.

The illustrated method includes operations that are archi-
tecturally visible (e.g., visible from a software perspective).
In other embodiments, the method may optionally include
one or more microarchitectural operations. For example, the
instructions may be fetched, decoded (or otherwise con-
verted) into one or more instructions or control signals. The
source operands may be accessed and/or received. An execu-
tion unit or execution logic may be enabled to perform the
operation specified by the instruction, and may perform the
operation (e.g., microarchitectural operations to implement
the operations of the instructions may be performed). For
example, exclusive OR operations, rotate operations, addi-
tion operations, and the like may be performed, as described
elsewhere herein. Different microarchitectural ways of per-
forming the operation are contemplated. Other method
embodiments may include one or more such non-architectur-
ally visible operations.

FIG. 5 illustrates a portion of a round 534 of an SHA2
algorithm where state words or elements a-h are updated. A
property of the SHA2 algorithms is that within each round
only the values of the state words a and e are new and not
predetermined. The state words a and e are determined each
round based on the functions of the SHA2 algorithm, the
message and constant inputs, etc. In the illustration, these
functions are incorporated in T, and T,. All of the other state
words have old or predetermined values that simply have
been moved from one of the other state elements. For
example, the value of state element c,,, after the round is
equal to the value of the state element b, of the current round,
etc.). As a result, the value of state element a, of the current
round after two rounds of the SHA2 algorithm becomes the
value of the state element ¢, ,, the value of b, after two rounds
becomes the value of d,, ,, the value of e, after two rounds
becomes the value of g, ,, and the value of f; after two rounds
becomes the value of b, ,.

FIG. 6 is a block diagram of an embodiment of a useful
subset of four state words or elements a,, b,, ¢, and f, in a
register 615. The state words or elements may be stored in the
order shown, or alternatively in various different orders. A
useful consequence and advantage of storing these four state
words in the register is that after two rounds of the SHA2
algorithm they are equal to the four complementary state
elements c,,,, d,,,, g,.,, and h,,,. In some embodiments,
rather than needing to calculate any ofc,, ,,d,,,, g,,,,andh,  ,,
the values of the elements a;, b,, e;, and f; the register 615 may
simply be moved, copied, or otherwise stored in the register
619.

FIGS. 7A-B illustrate operations of a complementary pair
ofinstructions that are operable to generate updated state data
elements a,, ,, b,,,, €,,,, and f,,,, which have been updated
from the state data elements a,, b,, e,, and {, by two rounds of
the SHA2 hash algorithm. In some embodiments, the instruc-
tions use only two source operands (e.g., are useful for ISA or
microarchitectures that allow only two source operands to be
specified for these instructions). The instructions utilize 128-
bit packed data and/or registers having a width in bits (i.e.,
128-bits) that is half a combined width in bits of the eight



US 9,251,377 B2

9

32-bit state data elements of the SHA2 hash algorithm (i.e.,
256-bits). Although the full width of the state elements would
fit in two such registers, the message and constant inputs of
the SHA?2 algorithm also need to be introduced. The pair of
instructions provide one instruction (i.e., that of FIG. 7A) to
introduce the message and constant inputs and another
instruction (i.e., that of FIG. 7B) to update the state elements.
In other embodiments, an analogous pair of instructions may
be used for SHA?2 algorithms having combined state of 512-
bits using 256-bit packed data and/or registers.

FIG. 7A is a block diagram of an operation 740 performed
by an embodiment of a SHA?2 input instruction (SHA2_in).
The instruction specifies or otherwise indicates a first source
714A, specifies or otherwise indicates a second source 716A,
and specifies or otherwise indicates a destination 718A. In
some embodiments, the first source, second source, and des-
tination may be 128-bit registers or other storage locations.
The first source has a first 128-bit packed data including four
32-bit state data elements c,, d;, g;, and h,. For example, in the
illustration h; is stored in bits [31:0], g, is stored in bits [63:
32], d, s stored in bits [95:64], and ¢, is stored in bits [127:96],
although this particular order is not required.

The second source has a second 128-bit packed data
including two 32-bit state data elements e; and f,. In the
illustrated embodiment, e, is stored in bits [127:96] and f; is
stored in bits [64:95], although this particular order is not
required. The second source also has two 32-bit data elements
representing message and constant inputs for two rounds of
the SHA2 algorithm (i.e., the current round and one round
after the current round). In the illustrated embodiment, a first
data element representing a message input for the current
round W(i) added to a constant input for the current round
K(i) is stored in [31:0], and a second data element represent-
ing a message input for one round after the current round
W(i+1) added to a constant input for one round after the
current round K(i+1) is stored in [63:32]. In another embodi-
ment, each of W(i), W(i+1), K(i), and K(i+1) may be stored
separately in four data elements of the second packed data.

SHA2 execution logic 712A is operable to store a 128-bit
packed data result in the destination in response to the instruc-
tion. In some embodiments, the result includes four result
data elements. In the illustrated embodiment, a first result
data element (Y) is stored in bits [31:0]. The first result data
element (Y) represents a sum of the message input for the
current round W(i) added to the constant input for the current
round K(i) (i.e., W(1)+K(i)) added to the state data element h,
for the current round added to an evaluation of the Ch function
with the state elements e,, f,, and g, for the current round (i.e.,
Ch(e,, T, g,) added to an evaluation of the sigmal function with
the state element e, for the current round (i.e., Z,(e;)).

A second result data element (X) is stored in bits [63:32].
The second result data element (X) represents a sum of the
message input for one round after the current round W(i+1)
added to the constant input for one round after the current
round K(i+1) (i.e., W(i+1) plus K(i+1)) added to the state data
element g, for the current round. The X and Y elements
include the message and constant inputs for the two rounds as
well as the Y parameter incorporating the evaluation of the Ch
and sigmal functions. The X and Y elements are not defined in
the SHAZ2 algorithms and instead are new groupings of these
parameters for the instructions disclosed herein and are arbi-
trarily named.

The result also includes the state data element d, for the
current round stored in bits [95:64] and the state data element
¢, for the current round stored in bits [ 127:96]. This particular
order in the destination is not required. In some embodiments,
the first source is reused as the destination and the data ele-

10

40

45

10

ments ¢,, d;, X, Y overwrite the data elements c,, d,, g,, and h,.
The state elements g, and h, are no longer needed once the X
andY elements have been determined. In some embodiments,
this may allow the state elements a,, ,, b, », €;,,,, and f, , after
two rounds to be calculated with a single instruction having
only two source operands (e.g., as shown in FIG. 7B).

FIG. 7B is a block diagram of an operation 730B per-
formed by an embodiment of an SHA2 two round instruction
(SHA2_RNDS2). The instruction specifies or otherwise indi-
cates a first source 714B, specifies or otherwise indicates a
second source 716B, and specifies or otherwise indicates a
destination 718B. In some embodiments, the first source,
second source, and destination may be 128-bit registers or
other storage locations.

The first source has a first 128-bit packed data including
four 32-bit data elements. In some embodiments, the first
128-bit packed data may be equal or identical to the result of
the SHA?2 input instruction of FIG. 7A. In some embodi-
ments, the destination 718A of the SHA2 input instruction
may be indicated as the first source 714B of the SHA2 two
round instruction. As shown in the illustration, the first source
includes a first data element (Y) is stored in bits [31:0]. The
first data element (Y) represents a sum of the message input
for the current round W(i) added to the constant input for the
current round K(i) (i.e., W(1)+K(i)) added to the state data
element h, for the current round added to an evaluation of the
Ch function with the state elements e,, f,, and g, for the current
round (i.e., Ch(e,, f,, g,) added to an evaluation of the sigmal
function with the state element e, for the current round (i.e.,
Z,(e;)). A second data element (X) is stored in bits [63:32].
The second data element (X) represents a sum of the message
input for one round after the current round W(i+1) added to
the constant input for one round after the current round K(i+1)
(i-e., W(@i+1)plus K(i+1))added to the state data element g, for
the current round. The packed data also includes the state data
element d, for the current round stored in bits [95:64] and the
state data element c, for the current round stored in bits [127:
96]. This particular order in the source is not required.

The second source has a second 128-bit packed data
including four 32-bit state data elements a,, b,, e, and f,. In the
illustrated embodiment, a, is stored in bits [127:96], b, is
stored in bits [95:64], e, is stored in bits [63:32], and {; is
stored in bits [31:0], although this particular order is not
required.

SHAZ2 execution logic 712B is operable to store a 128-bit
packed data result in the destination 718B in response to the
instruction. In some embodiments, the result includes four
updated state data elements a,,,, b,,,, €,,,, and f,, , that have
been updated from the corresponding state data elements a,,
b,, e,, and {, respectively, by two rounds of the SHA2 hash
algorithm. In the illustrated embodiment, a,, , is stored in bits
[127:96], b,,, is stored in bits [95:64], e,,, is stored in bits
[63:32], and f,_ , is stored in bits [31:0], although this particu-
lar order is not required. Other embodiments may update the
state elements by a single round instead of two rounds, or by
more than two rounds.

As discussed above, the current round state variables a,, b,,
e; and f; are equivalent to the round i+2 state variables c,, ,,
d;.2s €140, and h,,, respectively. The current round state
variables a,, b,, e, and f, are stored in the second source.
Advantageously, the round i+2 state variables c;,,, d,,5, 2.2,
and h,, , do not need to be calculated separately. Rather, the
current round state variables a;, b,, e; and f; may merely be
reused as the round i+2 state variables c,, 5, d,, 5, g;,,,and h, , ,.
For example, the current round state variables b,, e, and f; in
the second source may be combined with the result in the



US 9,251,377 B2

11

destination to provide the complete set of the eight updated
state data elements that have all been updated by two rounds.

Advantageously, these instructions allow updating the val-
ues of all eight state elements of the SHA2 algorithm by two
rounds by executing two instructions, with the exception of
some operations to generate and add the message and con-
stant inputs (e.g., W(i)+K(1)), etc. In some embodiments, both
instructions may execute in on the order of about 3 cycles per
round, although the scope of the invention is not so limited.
The novel arrangement of the state elements a,, b;, e, and £, is
helpful in this regard. In addition, only two sources need to be
specified. Moreover, the registers can be half the combined
with of the state elements of the SHA?2 algorithm. Use of such
smaller registers, and associated execution widths, as
opposed to using twice the register and execution width,
generally helps to reduce the cost and power consumption of
the processors or integrated circuits. This may tend to make
implementation of these instructions useful for low cost and/
or mobile or battery powered electronic devices.

Listed below is pseudocode, in some embodiments, that
may use the SHA2_IN and SHA2_RNDS2 instructions,
where WKi=W(1)+K(i):

Given: XMMO=abef and XMM1=cdgh
Round i:
MOV XMM2, XMMO /IXMM2=abef
BLEND XMMO, mem(WK2,WK1) /XMMO= WK2,WK1,e,f
SHA2_IN XMM1, XMMO JXMMI1=edX1Y1
SHA2_RNDS2 XMM1, XMM2 /I XMM1=a2,b2,e2,f2

/IXMMO0=c2,d2,g2,h2

Round (i+2):
MOV XMM2, XMM1 /IXMM2=a2b2e22
BLEND XMM1, mem(WK4,WK3) //XMMO=WK4,WK3,e2, {2
SHA2_IN XMMO, XMM1 JIXMM1=c2d2X2Y2
SHA2_RNDS2 XMMO, XMM?2 / XMM1=a4,b4,e4,f4

JIXMMO=04,d4,g4,h4

FIGS. 8 A-C illustrate operations of a complementary set of
three instructions that are operable to generate all eight
updated state data elements a,, ,, b,, 5, ¢,,5.d,,5,€,,5. T 15, &5,
and h,,,, which have been updated from the state data ele-
ments a,, b;, ¢,, d,, e, T, and h, by two rounds of the SHA2 hash
algorithm. Each of the three instructions utilize only two
source operands. The instructions utilize 128-bit packed data
and/or registers having a width in bits (i.e., 128-bits) that is
half a combined width in bits of the eight 32-bit state data
elements of'the SHA2 hash algorithm (i.e., 256-bits). In other
embodiments, an analogous set of three instructions may be
used for SHA2 algorithms having combined state of 512-bits
using 256-bit packed data and/or registers.

FIG. 8A is a block diagram of an operation 840 performed
by an embodiment of a SHA?2 input instruction (SHA2_in).
The instruction specifies or otherwise indicates a first source
814A, specifies or otherwise indicates a second source 816A,
and specifies or otherwise indicates a destination 818A. In
some embodiments, the first source, second source, and des-
tination may be 128-bit registers or other storage locations.
The first source has a first 128-bit packed data including four
32-bit state data elements e,, f,, g,, and h,. For example, in the
illustration h; is stored in bits [31:0], g, is stored in bits [63:
32], 1, is stored in bits [95:64], and e, is stored in bits [127:96],
although this particular order is not required.

The second source has a second packed data including two
32-bit data elements representing message and constant
inputs for two rounds of the SHA2 algorithm (i.e., the current

20

25

30

40

45

50

12

round and one round after the current round). As shown, in
some embodiments, the second source and/or second packed
data may be 128-bits with half of the bits (e.g., an upper half)
being don’t care values (*) and the other half of the bits
holding the two 32-bit data elements. Alternatively, 64-bit
sources and/or packed data may be used. In the illustrated
embodiment, a first data element representing a message
input for the current round W(i) added to a constant input for
the current round K(i) is stored in [31:0], and a second data
element representing a message input for one round after the
current round W(i+1) added to a constant input for one round
after the current round K(i+1) is stored in [63:32]. In another
embodiment, each of W(i), W(i+1), K(i), and K(i+1) may be
stored separately in four data elements of the second packed
data.

SHAZ2 execution logic 812A is operable to store a 128-bit
packed data result in the destination in response to the instruc-
tion. In some embodiments, the result includes four result
data elements. In the illustrated embodiment, a first result
data element (Y) is stored in bits [31:0]. The first result data
element (Y) represents a sum of the message input for the
current round W(i) added to the constant input for the current
round K(i) (i.e., W(i)+K(i)) added to the state data element h,
for the current round added to an evaluation of the Ch function
with the state elements e,, f,, and g, for the current round (i.e.,
Ch(e,, 1, g;) added to an evaluation of the sigmal function with
the state element e, for the current round (i.e., Z,(e;)).

A second result data element (X) is stored in bits [63:32].
The second result data element (X) represents a sum of the
message input for one round after the current round W(i+1)
added to the constant input for one round after the current
round K(i+1) (i.e., W(i+1) plus K(i+1)) added to the state data
element g, for the current round. The result also includes the
state data element f, for the current round stored in bits [95:64]
and the state data element e, for the current round stored in
bits [127:96]. This particular order in the destination is not
required. In some embodiments, the first source is reused as
the destination and the data elements e,, f, X, Y of the result
overwrite the data elements e,, f,, g;, and h, of the first source,
although this is not required.

FIG. 8B is a block diagram of an operation 830B per-
formed by an embodiment of an SHA2 two round low update
instruction (SHA2_L.O). The instruction specifies or other-
wise indicates a first source 814B, specifies or otherwise
indicates a second source 816B, and specifies or otherwise
indicates a destination 818B. In some embodiments, the first
source, second source, and destination may be 128-bit regis-
ters or other storage locations.

The first source has a first 128-bit packed data including
four 32-bit data elements. In some embodiments, the first
128-bit packed data may be equal or identical to the result of
the SHA?2 input instruction of FIG. 8A. In some embodi-
ments, the destination 818A of the SHA2 input instruction of
FIG. 8A may be indicated as the first source 814B of the
SHA?2 two round low instruction of FIG. 8B. As shown in the
illustration, the first source includes a first data element (Y) is
stored in bits [31:0]. The first data element (Y) represents a
sum of the message input for the current round W(i) added to
the constant input for the current round K(i) (i.e., W(1)+K(1))
added to the state data element h, for the current round added
to an evaluation of the Ch function with the state elements e,,
and g, for the current round (i.e., Ch(e;, g,) added to an evalu-
ation of the sigmal function with the state element e, for the
current round (i.e., E,(e;)). A second data element (X) is
stored in bits [63:32]. The second data element (X) represents
a sum of the message input for one round after the current
round W(i+1) added to the constant input for one round after



US 9,251,377 B2

13

the current round K(i+1) (i.e., W(i+1) plus K(i+1)) added to
the state data element g, for the current round. The first source
also includes the state data element f, for the current round
stored in bits [95:64] and the state data element e, for the
current round stored in bits [127:96]. This particular order in
the first source is not required.

The second source has a second 128-bit packed data
including four 32-bit state data elements a,, b,, ¢;and d,. In the
illustrated embodiment, a, is stored in bits [127:96], b, is
stored in bits [95:64], ¢, is stored in bits [63:32], and is stored
in bits [31:0], although this particular order is not required.

SHA2 execution logic 812B is operable to store a 128-bit
packed data result in the destination 818B in response to the
instruction. In some embodiments, the result includes four
updated state data elements e,,,, f,,,, g;,,, and h,, , that have
been updated from the corresponding state data elements e,,
g;, and h,, respectively, by two rounds of the SHA2 hash
algorithm. In the illustrated embodiment, e,, , is stored in bits
[127:96], {,,, is stored in bits [95:64], g,,, is stored in bits
[63:32], and h,, , is stored in bits [31:0], although this particu-
lar order is not required. Other embodiments may update the
state elements by a single round instead of two rounds, or by
more than two rounds.

FIG. 8C is a block diagram of an operation 830C per-
formed by an embodiment of an SHA2 two round high update
instruction (SHA2_HI). The instruction specifies or other-
wise indicates a first source 814C, specifies or otherwise
indicates a second source 816C, and specifies or otherwise
indicates a destination 818C. In some embodiments, the first
source, second source, and destination may be 128-bit regis-
ters or other storage locations.

The first source has a first 128-bit packed data including
four 32-bit state data elements a,, b,, ¢, and d,. In the illustrated
embodiment, a, is stored in bits [127:96], b, is stored in bits
[95:64], c, is stored in bits [63:32], and d, is stored in bits
[31:0], although this particular order is not required.

The second source has a second 128-bit packed data
including four 32-bit data elements. In some embodiments,
the second 128-bit packed data may be equal or identical to
the result of the SHA?2 input instruction of FIG. 8A. In some
embodiments, the destination 818A of the SHA2 input
instruction of FIG. 8 A may be indicated as the second source
816C of the SHA2 two round high instruction of FIG. 8C. As
shown in the illustration, the second source includes a first
data element (Y) is stored in bits [31:0]. The first data element
(Y) represents a sum of the message input for the current
round W(i) added to the constant input for the current round
K@) (i.e., W(1)+K(i)) added to the state data element h, for the
current round added to an evaluation of the Ch function with
the state elements e,, f,, and g, for the current round (i.e.,
Ch(e,, 1, g;) added to an evaluation of the sigmal function with
the state element e; for the current round (ie., X,(g;)). A
second data element (X) is stored in bits [63:32]. The second
data element (X) represents a sum of the message input for
one round after the current round W(i+1) added to the con-
stant input for one round after the current round K(i+1) (i.e.,
W(i+1) plus K(i+1)) added to the state data element g, for the
current round. The second source also includes the state data
element f; for the current round stored in bits [95:64] and the
state data element e, for the current round stored in bits [127:
96]. This particular order in the second source is not required.

SHA2 execution logic 812C is operable to store a 128-bit
packed data result in the destination 818C in response to the
instruction. In some embodiments, the result includes four
updated state data elements a,, 5, b;,, C;,,, and d,, , that have
been updated from the corresponding state data elements a,,
b,, c,, and respectively, by two rounds of the SHA2 hash

5

10

15

20

25

30

35

40

45

50

55

60

65

14

algorithm. In the illustrated embodiment, a,, , is stored in bits
[127:96], b,,, is stored in bits [95:64], c,,, is stored in bits
[63:32], and d,, , is stored in bits [31:0], although this particu-
lar order is not required. Other embodiments may update the
state elements by a single round instead of two rounds, or by
more than two rounds.

In some embodiments, the execution of the SHA2 input
instruction, the SHA2 update low instruction, and the SHA2
update high instruction may complete two rounds of the
SHAZ2 algorithm in on the order of about 6 cycles total or 3
cycles per round. In one aspect, the SHA2 input instruction
may be performed first in a pipeline of about 3 cycles fol-
lowed by the SHA2 update low and SHA2 update high
instructions in a subsequent about 3 cycle pipeline. One ofthe
update instructions may be effectively hidden within the
execution of the other (e.g., may follow the other by one
cycle).

Embodiments of instructions that indicate only two source
operands have been described. Other embodiments pertain to
instructions that indicate three source operands. In some
embodiments, each of these three source operands have
packed data that is at most half of a width in bits of the
combined width of the eight state elements of the SHA2 hash
algorithm.

FIG. 9 is ablock diagram of an operation 930 performed by
an embodiment of an SHA2 128-bit data two round instruc-
tion (SHA256_ 2RND). The instruction specifies or other-
wise indicates a first source 914, specifies or otherwise indi-
cates a second source 916, specifies or otherwise indicates a
third source 944, and specifies or otherwise indicates a des-
tination 918. In some embodiments, one of the first, second,
and third sources is reused as the destination. In some
embodiments, the first source, the second source, possibly the
third source, and the destination may be 128-bit registers or
other storage locations.

The first source has a first 128-bit packed data including
four 32-bit state data elements c;, d;, g;, and h,. For example,
in the illustration b, is stored in bits [31:0], g, is stored in bits
[63:32], d, is stored in bits [95:64], and c, is stored in bits
[127:96], although this particular order is not required.

The second source has a second 128-bit packed data
including four 32-bit state data elements a,, b,, e,, and f,. For
example, in the illustration f; is stored in bits [31:0], e, is
stored in bits [63:32], b, is stored in bits [95:64], and a, is
stored in bits [127:96], although this particular order is not
required.

The third source has a third packed data including two
32-bit data elements representing message and constant
inputs for two rounds of the SHA2 algorithm (i.e., the current
round and one round after the current round). As shown, in
some embodiments, the third source and/or third packed data
may be 128-bits wide with half of the bits (e.g., an upper half)
being don’t care values (*) and the other half of the bits
holding the two 32-bit data elements. Alternatively, the data
may be arranged differently. As another option, 64-bit sources
and/or packed data having two 32-bit data elements may be
used. In the illustrated embodiment, a first data element rep-
resenting a message input for the current round W(i) added to
a constant input for the current round K(i) is stored in [31:0],
and a second data element representing a message input for
one round after the current round W(i+1) added to a constant
input for one round after the current round K(i+1) is stored in
[63:32]. In another embodiment, each of W(i), W(i+1), K(i),
and K(i+1) may be stored in a different one of four 32-bit data
elements of a 128-bit packed data.

SHAZ2 execution logic 912 is operable to store a 128-bit
packed data result in the destination 918 in response to the



US 9,251,377 B2

15

instruction. In some embodiments, the result includes four
updated state data elements a,,,, b, », €,,,, and f,, , that have
been updated from the corresponding state data elements a,,
b,, e,, and £, ,, respectively, by two rounds of the SHA2 hash
algorithm. In the illustrated embodiment, a,, , is stored in bits
[127:96], b,,, is stored in bits [95:64], e,,, is stored in bits
[63:32], and T, , , is stored in bits [31:0], although this particu-
lar order is not required. Other embodiments may update the
state elements by a single round instead of two rounds, or by
more than two rounds (e.g., four rounds).

FIG. 10 is a block diagram of an operation 1030 performed
by an embodiment of an SHA2 256-bit data two round
instruction (SHAS12RNDS2). The instruction/operation are
similar to those of FIG. 9 except that they are for SHA2
algorithms with twice as much state (i.e., 512-bits of state
instead of 256-bits of state), operate on state elements and
message and constant inputs that are twice as large (i.e.,
64-bits instead of 32-bits), and use packed data that are twice
as large (i.e., 256-bits instead of 128-bits).

The instruction specifies or otherwise indicates a first
source 1014, specifies or otherwise indicates a second source
1016, specifies or otherwise indicates a third source 1044, and
specifies or otherwise indicates a destination 1018. In some
embodiments, one of the first, second, and third sources is
reused as the destination. In some embodiments, the first
source, the second source, possibly the third source, and the
destination may be 256-bit registers or other storage loca-
tions.

The first source has a first 256-bit packed data including
four 64-bit state data elements c,, d,, g,, and h,. For example,
in the illustration h, is stored in bits [63:0], g, is stored in bits
[127:64], d, is stored in bits [191:128], and ¢, is stored in bits
[255:192], although this particular order is not required.

The second source has a second 256-bit packed data
including four 64-bit state data elements a,, b,, e,, and f,. For
example, in the illustration f, is stored in bits [63:0], e, is
stored in bits [127:64], b, is stored in bits [191:128], and a, is
stored in bits [255:192], although this particular order is not
required.

The third source has a third packed data including two
64-bit data elements representing message and constant
inputs for two rounds of the SHA2 algorithm (i.e., the current
round and one round after the current round). As shown, in
some embodiments, the third source and/or third packed data
may be 256-bits wide with half of the bits (e.g., an upper half)
being don’t care values (*) and the other half of the bits
holding the two 64-bit data elements. Alternatively, the data
may be arranged differently. As another option, 128-bit
sources and/or packed data having two 64-bit data elements
may be used. In the illustrated embodiment, a first data ele-
ment representing a message input for the current round W(i)
added to a constant input for the current round K(i) is stored
in [63:0], and a second data element representing a message
input for one round after the current round W(i+1) added to a
constant input for one round after the current round K(i+1) is
stored in [127:64]. In another embodiment, each of W(i),
W(i+1), K(i), and K(i+1) may be stored in a different one of
four 64-bit data elements of a 256-bit packed data.

SHA2 execution logic 1012 is operable to store a 256-bit
packed data result in the destination 1018 in response to the
instruction. In some embodiments, the result includes four
updated 64-bit state data elements a,, 5, b,, 5, €;,,, and f; , that
have been updated from the corresponding state data ele-
ments a,, b;, e,, and f,, respectively, by two rounds of the SHA2
hash algorithm. In the illustrated embodiment, a,, , is stored in
bits [255:192], b,, , is stored in bits [191:128], e,, , is stored in
bits [127:64], and £, , is stored in bits [63:0], although this

10

15

20

25

30

35

40

45

50

55

60

65

16

particular order is not required. Other embodiments may
update the state elements by a single round instead of two
rounds, or by more than two rounds (e.g., four rounds).

FIGS. 9-10 utilize the novel arrangement of the state vari-
ables a,, b,, e, and {, in one source. As discussed above, the
current round state variables a,, b,, e, and f; are equivalent to
the round i+2 state variables c,,,, d,,,. g,,,, and h,  ,, respec-
tively. The current round state variables a,, b;, e, and {; are
stored in the second source. Advantageously, the round i+2
state variables c,,,, d;,,, g5, and h,,, do not need to be
calculated separately. Rather, the current round state vari-
ables a,, b;, e; and f; may merely be reused as the round i+2
state variables c,,,, d,,,, 2,5, and h,,,. For example, the
current round state variables a,, b,, e, and {, in the second
source may be combined with the result in the destination to
provide the complete set of the eight updated state data ele-
ments that have all been updated by two rounds. As another
example, a subsequent instruction may indicate the current
round state variables a,, b,, e; and f; in the second source as if
they were the round i+2 state variables ¢, », d;,», 2,,,, and h, ,
and they may be processed as such and used to generate, for
example, the round i+4, etc.

Advantageously, the instruction/operation allows updating
the values of all eight state elements of the SHA2 algorithm
by two rounds by executing a single instructions, with the
exception of some operations to generate and add the message
and constant inputs (e.g., W(1)+K(i)), etc. The novel arrange-
ment of the state elements a,, b, e, and £, is helpful in this
regard. In addition, the registers can be half the combined
with of the state elements of the SHA2 algorithm. Use of such
smaller registers, and associated execution widths, as
opposed to using twice the register and execution width,
generally helps to reduce the cost and power consumption of
the processors or integrated circuits. This may tend to make
implementation of these instructions useful for low cost and/
or mobile or battery powered electronic devices.

FIG. 11 is ablock diagram of an operation 1130 performed
by an embodiment of an SHA2 128-bit data four round
instruction (SHA256_ 4RND). The instruction specifies or
otherwise indicates a first source 1114, specifies or otherwise
indicates a second source 1116, specifies or otherwise indi-
cates a third source 1144, specifies or otherwise indicates a
first destination 1118 A, and specifies or otherwise indicates a
second destination 1118B. In some embodiments, one of the
sources is reused as the first destination and another of the
sources is reused as the second destination. In some embodi-
ments, the first source, the second source, the third source,
and the destination may be 128-bit registers or other storage
locations.

The first source has a first 128-bit packed data including
four 32-bit state data elements c;, d;, g;, and h,. For example,
in the illustration b, is stored in bits [31:0], g, is stored in bits
[63:32], d, is stored in bits [95:64], and c, is stored in bits
[127:96], although this particular order is not required.

The second source has a second 128-bit packed data
including four 32-bit state data elements a,, b,, e,, and f,. For
example, in the illustration f; is stored in bits [31:0], e; is
stored in bits [63:32], b, is stored in bits [95:64], and a, is
stored in bits [127:96], although this particular order is not
required.

The third source has a third 128-bit packed data including
four 32-bit data elements representing message and constant
inputs for four rounds of the SHA?2 algorithm (i.e., the current
round (1), one round after the current round (i+1), two rounds
after the current round (i+2), and three rounds after the cur-
rent round (i+3)). In the illustrated embodiment, a first data
element representing a message input for the current round



US 9,251,377 B2

17

W(i) added to a constant input for the current round K(i) is
stored in [31:0], and a second data element representing a
message input for one round after the current round W(i+1)
added to a constant input for one round after the current round
K(i+1) is stored in [63:32]. Continuing, a third data element
representing a message input for two rounds after the current
round W(i+2) added to a constant input for two rounds after
the current round K(i+2) is stored in [63:32], and a fourth data
element representing a message input for three rounds after
the current round W(i+3) added to a constant input for three
rounds after the current round K(i+3) is stored in [63:32]. In
other embodiments, the data may be arranged differently.

SHA2 execution logic 1112 is operable to store a first
128-bit packed data result in a first destination 1118 A indi-
cated by the instruction, and a second 128-bit packed data
result in a second destination 1118B indicated by the instruc-
tion in response to the instruction. In some embodiments, the
first 128-bit packed data result includes four updated state
data elements a,, 5, b;,, €,,,, and {,, , that have been updated
from the corresponding state data elements a,, b,, e;, and f,,
respectively, by two rounds of the SHA2 hash algorithm. In
the illustrated embodiment, a,, , is stored in bits [127:96], b, ,
is stored in bits [95:64], e, , is stored in bits [63:32], and £, ,
is stored in bits [31:0], although this particular order is not
required. In some embodiments, the second 128-bit packed
dataresultincludes four updated state data elements a,, ,, b, , 4,

e,,4, and £, , that have been updated from the corresponding
state data elements a,, b,, e,, and respectively, by four rounds
of the SHA2 hash algorithm. In the illustrated embodiment,
a,, , is stored in bits [127:96], b,, , is stored in bits [95:64], is
stored in bits [63:32], and f, ,, is stored in bits [31:0], although
this particular order is not required.

In some embodiments, the first 128-bit packed data result
may be stored in the first destination after two rounds have
completed (e.g., about half way through the execution of the
instruction) and the second 128-bit packed data result may be
stored in the second destination after four rounds have com-
pleted (e.g., about fully through the execution of the instruc-
tion).

The state variables after tworounds a,,,, b, ,, €,,, and £, ,,
which are stored in the first destination 1118 A, are equivalent
to the state variables after fourroundsc,,,,d,, 4, 8,,4,andh, .
respectively. Advantageously, the state variables after four
rounds ¢, 4, d,, 4, g4, and h,, ., do not need to be calculated
separately. Rather, the state variables after two rounds a,,,,
b, €;,,and{ ,, which are stored in the first destination, may
merely be used as the state variables after four rounds c,,,,
d; 45 2,4, and h,,,. The state variables after two rounds a,, ,,

20 €., and ., which are stored in the first destination
1118A, may be combined with the state variables after four
rounds a,, 4, b, 4, €,,, and f,, ,, which are stored in the second
destination 1118B to obtain the set of eight updated state
elements each updated by four rounds of the SHA2 algorithm.
In some embodiments, the first source may be reused as the
first destination and the second source may be reused as the
second destination, although this is not required.

FIG. 12 is ablock diagram of an operation 1230 performed
by an embodiment of an SHA2 512-bit data four round
instruction (SHAS12RNDS4). The instruction/operation are
similar to those of FIG. 11 except that they are for SHA2
algorithms with twice as much state (i.e., 512-bits of state
instead of 256-bits of state), operate on state elements and
message and constant inputs that are twice as large (i.e.,
64-bits instead of 32-bits), and use packed data that are twice
as large (i.e., 256-bits instead of 128-bits).

The instruction specifies or otherwise indicates a first
source 1214, specifies or otherwise indicates a second source

10

15

20

25

30

35

40

45

55

60

65

18

1216, specifies or otherwise indicates a third source 1244,
specifies or otherwise indicates a first destination 1218 A, and
specifies or otherwise indicates a second destination 1218B.
In some embodiments, one of the sources is reused as the first
destination and another of the sources is reused as the second
destination. In some embodiments, the sources and destina-
tions may be 256-bit registers or other storage locations.

The first source has a first 256-bit packed data including
four 64-bit state data elements c,, d,, g,, and h,. For example,
in the illustration h, is stored in bits [63:0], g, is stored in bits
[127:64], d, is stored in bits [191:128], and ¢, is stored in bits
[255:192], although this particular order is not required.

The second source has a second 256-bit packed data
including four 64-bit state data elements a,, b,, e,, and f,. For
example, in the illustration f; is stored in bits [63:0], e; is
stored in bits [127:64], b, is stored in bits [191:128], and a, is
stored in bits [255:192], although this particular order is not
required.

The third source has a third 256-bit packed data including
four 64-bit data elements representing message and constant
inputs for four rounds of the SHA?2 algorithm (i.e., the current
round (1), one round after the current round (i+1), two rounds
after the current round (i+2), and three rounds after the cur-
rent round (i+3)). In the illustrated embodiment, a first data
element representing a message input for the current round
W(i) added to a constant input for the current round K(i) is
stored in [63:0], and a second data element representing a
message input for one round after the current round W(i+1)
added to a constant input for one round after the current round
K(i+1) is stored in [127:64]. Continuing, a third data element
representing a message input for two rounds after the current
round W(i+2) added to a constant input for two rounds after
the current round K(i+2) is stored in [191:128], and a fourth
data element representing a message input for three rounds
after the current round W(i+3) added to a constant input for
three rounds after the current round K(i+3) is stored in [255:
192]. In other embodiments, the data may be arranged difter-
ently.

SHA2 execution logic 1212 is operable to store a first
256-bit packed data result in a first destination 1218 A indi-
cated by the instruction, and a second 256-bit packed data
result in a second destination 1218B indicated by the instruc-
tion in response to the instruction. In some embodiments, the
first 256-bit packed data result includes four updated state
data elements a,,,, b,,,, €,,,, and f,, , that have been updated
from the corresponding state data elements a,, b,, e,, and
respectively, by two rounds of the SHA?2 hash algorithm. In
the illustrated embodiment, a,,, is stored in bits [255:192],
b,,, is stored in bits [191:128], e, , is stored in bits [127:64],
and f,, is stored in bits [63:0], although this particular order
is not required. In some embodiments, the second 128-bit
packed data result includes four updated state data elements
a4, D4 €.,4, and f,,, that have been updated from the
corresponding state data elements a,, b,, e,, and respectively,
by four rounds of the SHA2 hash algorithm. In the illustrated
embodiment, a, , is stored in bits [255:192], b, , is stored in
bits [191:128], is stored in bits [127:64], and {,, , is stored in
bits [63:0], although this particular order is not required.

In some embodiments, the first 128-bit packed data result
may be stored in the first destination after two rounds have
completed (e.g., about half way through the execution of the
instruction) and the second 128-bit packed data result may be
stored in the second destination after four rounds have com-
pleted (e.g., about fully through the execution of the instruc-
tion).

The state variables after two rounds a,, ,, b,, 5, €;,, and f,, ,,
which are stored in the first destination 1218A, are equivalent



US 9,251,377 B2

19

to the state variables after fourroundsc,, ,,d;, 4, 2;.4,and h,, .,
respectively. Advantageously, the state variables after four
rounds ¢, 4, d,, 4, g4, and h,, ., do not need to be calculated
separately. Rather, the state variables after two rounds a,,,,
b, €;,,and{ ,, which are stored in the first destination, may
merely be used as the state variables after four rounds c,, ,,
d, .4, 8.4, and b, ,. The state variables after two rounds a, ,,
b,,., €., and f,,,, which are stored in the first destination
1218A, may be combined with the state variables after four
rounds a,, 4, b, 4, €,,, and f,, ,, which are stored in the second
destination 1218B, to obtain the set of eight updated state
elements each updated by four rounds of the SHA2 algorithm.
In some embodiments, the first source may be reused as the
first destination and the second source may be reused as the
second destination, although this is not required.

FIGS. 7-12 illustrate a few particular embodiments of suit-
able instructions/operations. However, many other embodi-
ments are contemplated and will be apparent to those skilled
in the art and having the benefit of the present disclosure. For
example, in each of these embodiments, the particular order
of the data elements (e.g., the state elements) within the
sources and destination may optionally be rearranged. For
example, rather than storing the state elements in the order a,
b, e, f, they may instead be stored in any other desired order,
such as, for example, in the order £, e, b, a, or in the order b, a,
f, e, or in any other desired order. As another example, any of
the embodiments described for SHA2 algorithms with 256-
bits of state using 128-bit registers may also be used for SHA2
algorithms with 512-bits of state using 256-bit registers. In
each of these embodiments, one or more of the sources may
optionally be implicit instead of explicit. In each of these
embodiments, a source may either be used as a source/desti-
nation or alternatively a separately specified or indicated des-
tination may be used. Moreover, while 128-bit or 256-bit
storage locations have been described, larger registers or
other storage locations may be used if desired to store the
128-bit or 256-bit packed data.

As mentioned above, the operations are slightly different
for SHA-512 than for SHA-256. Although the operations for
these algorithms are well known in the art, and described fully
in the Secure Hash Standard (SHS) (FIPS PUB 180-3), the set
of operations for SHA-512 are as follows:

2,>(a)=(a ROTR 28) XOR (a ROTR 34) XOR (a ROTR
39)

3,°12(e)=(e ROTR 14) XOR (e ROTR 18) XOR (e ROTR
41)

Maj(a, b, c)=(a AND b) XOR (a AND ¢) XOR (b AND ¢)

Ch(e, f, g)=(e AND f) XOR (NOT e) AND g)

T,=h+Z >*2(e)+Ch(e, T, g)+K,> 12+ W,

T,=2,°"%(a)+Maij(a, b, ¢)

il
o @ oo

+T,

TeT
L]

q
o

b=a

a=T,+T,

FIG. 13A is a block diagram of a first embodiment of a
suitable instruction format. The instruction format includes
an operation code or opcode 1346 A. The opcode may repre-
sent a plurality of bits or one or more fields that are operable
to identify the instruction and/or the operation to be per-
formed. The instruction format also includes a first source/
destination specifier 1348A and a second source specifier
1350A. By way of example, each of these specifiers may
include bits or one or more fields to specify an address of a

10

15

20

25

30

35

40

45

50

55

60

65

20

register, memory location, or other storage location. The first
source/destination specifier is to specify a storage location
that is to have a first source operand and the same specified
storage location is also to be used as the destination where the
result is to be stored. Alternatively, in another embodiment,
one or more of the first source/destination and/or the second
source may be implicit to the instruction instead of being
explicitly specified. This instruction format specifies or oth-
erwise indicates only two sources. The instructions shown
and described above for FIGS. 7-8 are very useful for such
instruction formats.

FIG. 13B is a block diagram of a second embodiment of a
suitable instruction format. The instruction format includes
an operation code or opcode 1346B, a first source/destination
specifier 1348B, and a second source specifier 1350B. Each
of these may be similar to or the same as those of the first
instruction format. This instruction format also includes an
optional third source specifier 1352B to specity a third source
storage location where a third source operand is stored. Alter-
natively, the third source storage location may be may be
implicit to the instruction instead of being explicitly speci-
fied. This instruction format specifies or otherwise indicates
three sources. The instructions shown and described above
for FIGS. 9-10 are very useful for such instruction formats.

FIG. 13C is a block diagram of a third embodiment of a
suitable instruction format. The instruction format includes
an operation code or opcode 1346C, a first source/destination
specifier 1348C, a second source/destination specifier
1350C, and an optional third source specifier 1352C. Each of
these may be similar to or the same as those of the second
instruction format except that the second source specifier is
also used for a destination. This instruction format specifies
or otherwise indicates three sources and two destinations. The
instructions shown and described above for FIGS. 11-12 are
very useful for such instruction formats. As described above,
in some embodiments, one of the destinations may be written
about half way through the execution of the instruction after
two rounds and the other destination may be written after all
four rounds.

These are just a few illustrative embodiments. It is to be
appreciated that in other embodiments one of the explicit
specifiers may instead be implicit to the instruction. Alternate
embodiments may include a subset of the specifiers, may add
additional fields, may overlap certain fields, etc. The illus-
trated order/arrangement of the fields and is not required, but
rather the fields may be rearranged. Fields need not include
contiguous sequences of bits but rather may be composed of
non-contiguous or separated bits. In some embodiments, the
instruction format may follow an EVEX encoding or instruc-
tion format (e.g., in the case of three source fields and/or
instructions for the SHA-512 algorithm), although this is not
required.

FIG. 14 is ablock diagram of a particular example embodi-
ment of a suitable set of packed data or vector registers 1454.
The packed data registers include thirty-two 512-bit packed
data registers labeled ZMMO through ZMM31. In the illus-
trated embodiment, the lower order 256-bits of the lower
sixteen of these registers, namely ZMMO-ZMM15, are
aliased or overlaid on respective 256-bit packed data registers
labeled YMMO-YMM15, although this is not required. Like-
wise, the lower order 128-bits of YMMO-YMM15 are aliased
oroverlaid on respective 128-bit packed data registers labeled
XMMO-XMM15, although this also is not required. The 512-
bit registers ZMMO through ZMM31 are operable to hold
512-bit packed data, 256-bit packed data, and/or 128-bit
packed data. The 256-bit registers YMMO-YMM15 are oper-
able to hold 256-bit packed data and/or 128-bit packed data.



US 9,251,377 B2

21

The 128-bit registers XMMO-XMM1 are operable to hold
128-bit packed data. Different data element sizes are sup-
ported including at least 8-bit byte data, 16-bit word data,
32-bit doubleword or single precision floating point data, and
64-bit quadword or double precision floating point data.
Alternate embodiments of packed data registers may include
different numbers of registers, different sizes of registers,
may or may not alias larger registers on smaller registers, or
be otherwise different than those shown (e.g., may include
two or more distinct sets of registers).

The descriptions here are intended to implement the SHA2
algorithms and obtain hashes consistent with the SHA2 algo-
rithms. Any inconsistencies herein that would lead to hashes
different than those described by the standard (e.g., due to
typos or otherwise) are unintentional and erroneous and those
skilled in the art will appreciate that the standard is correct
and replaces those typos.

Some embodiments pertain to an article of manufacture
(e.g., a computer program product) including a machine-
readable storage medium that stores at least one of the instruc-
tions described elsewhere herein. Any of the instructions
disclosed herein are suitable and may be stored on the
medium.

In some embodiments, the machine-readable storage
medium may be a tangible and/or non-transitory machine-
readable storage medium. In various embodiments, the
machine-readable storage medium may include a floppy dis-
kette, an optical disk, a CD-ROM, a magnetic disk, a mag-
neto-optical disk, a read only memory (ROM), a program-
mable ROM (PROM), an erasable-and-programmable ROM
(EPROM), an electrically-erasable-and-programmable ROM
(EEPROM), a random access memory (RAM), a static-RAM
(SRAM), a dynamic-RAM (DRAM), a Flash memory, a
phase-change memory, a semiconductor memory, or a com-
bination thereof. In some embodiments, the medium may
include one or more solid data storage materials, such as, for
example, a semiconductor data storage material, a phase-
change data storage material, a magnetic data storage mate-
rial, an optical solid data storage material, etc.

Examples of suitable machines include, but are not limited
to, processors (e.g., general-purpose processors and special-
purpose processors), instruction processing apparatus, and
electronic devices having one or more processors or instruc-
tion processing apparatus. Examples of suitable electronic
devices include, but are not limited to, desktop computers,
laptop computers, notebook computers, cellular phones,
handheld or mobile computers, servers, network elements,
set-top boxes, other types of computer systems, and the like.

An instruction set includes one or more instruction for-
mats. A given instruction format defines various fields (num-
ber ofbits, location of bits) to specify, among other things, the
operation to be performed (opcode) and the operand(s) on
which that operation is to be performed. Some instruction
formats are further broken down though the definition of
instruction templates (or subformats). For example, the
instruction templates of a given instruction format may be
defined to have different subsets of the instruction format’s
fields (the included fields are typically in the same order, but
atleast some have different bit positions because there are less
fields included) and/or defined to have a given field inter-
preted differently. Thus, each instruction of an ISA is
expressed using a given instruction format (and, if defined, in
a given one of the instruction templates of that instruction
format) and includes fields for specifying the operation and
the operands. For example, an exemplary ADD instruction
has a specific opcode and an instruction format that includes
an opcode field to specify that opcode and operand fields to

10

15

20

25

30

35

40

45

50

55

60

65

22

select operands (sourcel/destination and source2); and an
occurrence of this ADD instruction in an instruction stream
will have specific contents in the operand fields that select
specific operands. A set of SIMD extensions referred to the
Advanced Vector Extensions (AVX) (AVX1 and AVX2) and
using the Vector Extensions (VEX) coding scheme, has been,
has been released and/or published (e.g., see Intel® 64 and
1A-32 Architectures Software Developers Manual, October
2011; and see Intel® Advanced Vector Extensions Program-
ming Reference, June 2011).

Exemplary Instruction Formats

Embodiments of the instruction(s) described herein may be
embodied in different formats. Additionally, exemplary sys-
tems, architectures, and pipelines are detailed below.
Embodiments of the instruction(s) may be executed on such
systems, architectures, and pipelines, but are not limited to
those detailed.

VEX Instruction Format

VEX encoding allows instructions to have more than two
operands, and allows SIMD vector registers to be longer than
158 bits. The use of a VEX prefix provides for three-operand
(or more) syntax. For example, previous two-operand instruc-
tions performed operations such as A=A+B, which over-
writes a source operand. The use of a VEX prefix enables
operands to perform nondestructive operations such as A=B+
C.

FIG. 15A illustrates an exemplary AVX instruction format
including a VEX prefix 1502, real opcode field 1530, Mod
R/M byte 1540, SIB byte 1550, displacement field 1562, and
IMMS8 1572. FIG. 15B illustrates which fields from FIG. 15A
make up a full opcode field 1574 and a base operation field
1542. FIG. 15C illustrates which fields from FIG. 15A make
up a register index field 1544.

VEX Prefix (Bytes 0-2) 1502 is encoded in a three-byte
form. The first byte is the Format Field 1540 (VEX Byte O,
bits [7:0]), which contains an explicit C4 byte value (the
unique value used for distinguishing the C4 instruction for-
mat). The second-third bytes (VEX Bytes 1-2) include a
number of bit fields providing specific capability. Specifi-
cally, REX field 1505 (VEX Byte 1, bits [7-5]) consists of a
VEXR bit field (VEX Byte 1, bit [7]-R), VEX.X bit field
(VEX byte 1, bit [6]-X), and VEX.B bit field (VEX byte 1,
bit[5]-B). Other fields of the instructions encode the lower
three bits of the register indexes as is known in the art (ar, xxx,
and bbb), so that Rrrr, Xxxx, and Bbbb may be formed by
adding VEX R, VEX X, and VEX.B. Opcode map field 1518
(VEX byte 1, bits [4:0]-mmmmm) includes content to encode
an implied leading opcode byte. W Field 1564 (VEX byte 2,
bit [ 7]-W)—is represented by the notation VEX.W, and pro-
vides different functions depending on the instruction. The
role of VEX.vvvv 1523 (VEX Byte 2, bits [6:3]-vvvv) may
include the following: 1) VEX.vvvv encodes the first source
register operand, specified in inverted (1s complement) form
and is valid for instructions with 2 or more source operands;
2) VEX.vvvv encodes the destination register operand, speci-
fied in is complement form for certain vector shifts; or 3)
VEX.vvvv does not encode any operand, the field is reserved
and should contain 1111 b. If VEX.L. 1568 Size field (VEX
byte 2, bit [2]-L.)=0, it indicates 158 bit vector; if VEX.I.=1, it
indicates 256 bit vector. Prefix encoding field 1525 (VEX
byte 2, bits [1:0]-pp) provides additional bits for the base
operation field.

Real Opcode Field 1530 (Byte 3) is also known as the
opcode byte. Part of the opcode is specified in this field.

MOD R/M Field 1540 (Byte 4) includes MOD field 1542
(bits [7-6]), Reg field 1544 (bits [5-3]), and R/M field 1546
(bits [2-0]). The role of Reg field 1544 may include the



US 9,251,377 B2

23

following: encoding either the destination register operand or
a source register operand (the rrr of Rrrr), or be treated as an
opcode extension and not used to encode any instruction
operand. The role of R/M field 1546 may include the follow-
ing: encoding the instruction operand that references a
memory address, or encoding either the destination register
operand or a source register operand.

Scale, Index, Base (SIB)—The content of Scale field 1550
(Byte 5) includes SS1552 (bits [7-6]), which is used for
memory address generation. The contents of SIB.xxx 1554
(bits [5-3]) and SIB.bbb 1556 (bits [2-0]) have been previ-
ously referred to with regard to the register indexes Xxxx and
Bbbb.

The Displacement Field 1562 and the immediate field
(IMMS) 1572 contain address data.

Exemplary Register Architecture

FIG. 16 is a block diagram of a register architecture 1600
according to one embodiment of the invention. In the embodi-
ment illustrated, there are 32 vector registers 1610 that are
515 bits wide; these registers are referenced as zmmO through
zmm31. The lower order 256 bits of the lower 19 zmm reg-
isters are overlaid on registers ymmO0-19. The lower order 158
bits of the lower 19 zmm registers (the lower order 158 bits of
the ymm registers) are overlaid on registers xmmO-18.

Write mask registers 1618—in the embodiment illustrated,
there are 8 write mask registers (kO through k7), each 64 bits
in size. In an alternate embodiment, the write mask registers
1618 are 19 bits in size. As previously described, in one
embodiment of the invention, the vector mask register kO
cannot be used as a write mask; when the encoding that would
normally indicate kO is used for a write mask, it selects a
hardwired write mask of OXFFFF, effectively disabling write
masking for that instruction.

General-purpose registers 1625—in the embodiment illus-
trated, there are sixteen 64-bit general-purpose registers that
are used along with the existing x86 addressing modes to
address memory operands. These registers are referenced by
the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, and
R8 through R18.

Scalar floating point stack register file (x87 stack) 1645, on
which is aliased the MMX packed integer flat register file
1650—in the embodiment illustrated, the x87 stack is an
eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87
instruction set extension; while the MMX registers are used to
perform operations on 64-bit packed integer data, as well as to
hold operands for some operations performed between the
MMX and XMM registers.

Alternative embodiments of the invention may use wider or
narrower registers. Additionally, alternative embodiments of
the invention may use more, less, or different register files and
registers.

Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways, for
different purposes, and in different processors. For instance,
implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose comput-
ing; 2) a high performance general purpose out-of-order core
intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific
(throughput) computing. Implementations of different pro-
cessors may include: 1) a CPU including one or more general
purpose in-order cores intended for general-purpose comput-
ing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coproces-
sor including one or more special purpose cores intended

10

15

20

25

30

35

40

45

50

55

60

65

24
primarily for graphics and/or scientific (throughput). Such
different processors lead to different computer system archi-
tectures, which may include: 1) the coprocessor on a separate
chip from the CPU; 2) the coprocessor on a separate die in the
same package as a CPU; 3) the coprocessor on the same die as
a CPU (in which case, such a coprocessor is sometimes
referred to as special purpose logic, such as integrated graph-
ics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same
die the described CPU (sometimes referred to as the applica-
tion core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.
Exemplary Core Architectures
In-Order and Out-of-Order Core Block Diagram

FIG. 17A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 17B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in FIGS.
17A-B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-
order aspect, the out-of-order aspect will be described.

In FIG. 17A, a processor pipeline 1700 includes a fetch
stage 1702, a length decode stage 1704, a decode stage 1706,
an allocation stage 1708, a renaming stage 1710, a scheduling
(also known as a dispatch or issue) stage 1715, a register
read/memory read stage 1717, an execute stage 1719, a write
back/memory write stage 1721, an exception handling stage
1722, and a commit stage 1724.

FIG. 17B shows processor core 1790 including a front end
unit 1730 coupled to an execution engine unit 1750, and both
are coupled to a memory unit 1770. The core 1790 may be a
reduced instruction set computing (RISC) core, a complex
instruction set computing (CISC) core, a very long instruction
word (VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 1790 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 1730 includes a branch prediction unit
1732 coupled to an instruction cache unit 1734, which is
coupled to an instruction translation lookaside buffer (TLB)
1736, which is coupled to an instruction fetch unit 1738,
which is coupled to a decode unit 1740. The decode unit 1740
(or decoder) may decode instructions, and generate as an
output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decode unit
1740 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only memo-
ries (ROMs), etc. In one embodiment, the core 1790 includes
a microcode ROM or other medium that stores microcode for
certain macroinstructions (e.g., in decode unit 1740 or other-
wise within the front end unit 1730). The decode unit 1740 is
coupled to a rename/allocator unit 1752 in the execution
engine unit 1750.



US 9,251,377 B2

25

The execution engine unit 1750 includes the rename/allo-
cator unit 1752 coupled to a retirement unit 1754 and a set of
one or more scheduler unit(s) 1756. The scheduler unit(s)
1756 represents any number of different schedulers, includ-
ing reservations stations, central instruction window, etc. The
scheduler unit(s) 1756 is coupled to the physical register
file(s) unit(s) 1758. Each of the physical register file(s) units
1758 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the
physical register file(s) unit 1758 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis-
ters, vector mask registers, and general purpose registers. The
physical register file(s) unit(s) 1758 is overlapped by the
retirement unit 1754 to illustrate various ways in which reg-
ister renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement reg-
ister file(s); using a future file(s), a history buffer(s), and a
retirement register file(s); using a register maps and a pool of
registers; etc.). The retirement unit 1754 and the physical
register file(s) unit(s) 1758 are coupled to the execution clus-
ter(s) 1760. The execution cluster(s) 1760 includes a set of
one or more execution units 1762 and a set of one or more
memory access units 1764. The execution units 1762 may
perform various operations (e.g., shifts, addition, subtraction,
multiplication) and on various types of data (e.g., scalar float-
ing point, packed integer, packed floating point, vector inte-
ger, vector floating point). While some embodiments may
include a number of execution units dedicated to specific
functions or sets of functions, other embodiments may
include only one execution unit or multiple execution units
that all perform all functions. The scheduler unit(s) 1756,
physical register file(s) unit(s) 1758, and execution cluster(s)
1760 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 1764). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 1764 is coupled to the
memory unit 1770, which includes a data TLB unit 1772
coupled to a data cache unit 1774 coupled to a level 2 (L2)
cache unit 1776. In one exemplary embodiment, the memory
access units 1764 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 1772 in the memory unit 1770. The instruction cache unit
1734 is further coupled to a level 2 (L.2) cache unit 1776 in the
memory unit 1770. The L2 cache unit 1776 is coupled to one
or more other levels of cache and eventually to a main
memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 1700 as follows: 1) the instruction fetch 1738 per-
forms the fetch and length decoding stages 1702 and 1704; 2)
the decode unit 1740 performs the decode stage 1706; 3) the
rename/allocator unit 1752 performs the allocation stage

10

15

20

25

30

35

40

45

50

55

60

65

26

1708 and renaming stage 1710; 4) the scheduler unit(s) 1756
performs the schedule stage 1715; 5) the physical register
file(s) unit(s) 1758 and the memory unit 1770 perform the
register read/memory read stage 1717, the execution cluster
1760 perform the execute stage 1719; 6) the memory unit
1770 and the physical register file(s) unit(s) 1758 perform the
write back/memory write stage 1721; 7) various units may be
involved in the exception handling stage 1722; and 8) the
retirement unit 1754 and the physical register file(s) unit(s)
1758 perform the commit stage 1724.

The core 1790 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
1790 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX?2), thereby allowing the opera-
tions used by many multimedia applications to be performed
using packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 1734/1774 and a shared
L2 cache unit 1776, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

Specific Exemplary In-Order Core Architecture

FIGS. 18A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks com-
municate through a high-bandwidth interconnect network
(e.g., aring network) with some fixed function logic, memory
1/O interfaces, and other necessary /O logic, depending on
the application.

FIG. 18A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
1802 and with its local subset of the Level 2 (1.2) cache 1804,
according to embodiments of the invention. In one embodi-
ment, an instruction decoder 1800 supports the x86 instruc-
tion set with a packed data instruction set extension. An L1
cache 1806 allows low-latency accesses to cache memory
into the scalar and vector units. While in one embodiment (to
simplify the design), a scalar unit 1808 and a vector unit 1810
use separate register sets (respectively, scalar registers 1815
and vector registers 1817) and data transferred between them
is written to memory and then read back in from alevel 1 (L1)
cache 1806, alternative embodiments of the invention may
use a different approach (e.g., use a single register set or



US 9,251,377 B2

27

include a communication path that allow data to be trans-
ferred between the two register files without being written and
read back).

The local subset of the .2 cache 1804 is part of a global .2
cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path to
its own local subset of the L2 cache 1804. Data read by a
processor core is stored in its .2 cache subset 1804 and can be
accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by a
processor core is stored in its own L2 cache subset 1804 and
is flushed from other subsets, if necessary. The ring network
ensures coherency for shared data. The ring network is bi-
directional to allow agents such as processor cores, [.2 caches
and other logic blocks to communicate with each other within
the chip. Each ring data-path is 1015-bits wide per direction.

FIG. 18B is an expanded view of part of the processor core
in FIG. 18 A according to embodiments of the invention. FIG.
18B includes an [.1 data cache 1806 A part of the [.1 cache
1804, as well as more detail regarding the vector unit 1810
and the vector registers 1817. Specifically, the vector unit
1810 is a 19-wide vector processing unit (VPU) (see the
19-wide ALU 1828), which executes one or more of integer,
single-precision float, and double-precision float instruc-
tions. The VPU supports swizzling the register inputs with
swizzle unit 1823, numeric conversion with numeric convert
units 1822 A-B, and replication with replication unit 1824 on
the memory input. Write mask registers 1826 allow predicat-
ing resulting vector writes.

Processor with Integrated Memory Controller and Graphics

FIG. 19 is a block diagram of a processor 1900 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
19 illustrate a processor 1900 with a single core 1902A, a
system agent 1910, a set of one or more bus controller units
1919, while the optional addition of the dashed lined boxes
illustrates an alternative processor 1900 with multiple cores
1902A-N, a set of one or more integrated memory controller
unit(s) 1917 in the system agent unit 1910, and special pur-
pose logic 1908.

Thus, different implementations of the processor 1900 may
include: 1) a CPU with the special purpose logic 1908 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
1902A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 1902A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 1902A-N being a
large number of general purpose in-order cores. Thus, the
processor 1900 may be a general-purpose processor, copro-
cessor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 1900 may be a part of and/or may
be implemented on one or more substrates using any of a
number of process technologies, such as, for example, BiC-
MOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
1906, and external memory (not shown) coupled to the set of
integrated memory controller units 1917. The set of shared

10

15

20

25

30

35

40

45

50

55

60

65

28

cache units 1906 may include one or more mid-level caches,
such as level 2 (L.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 1915 interconnects the integrated graphics logic 1908,
the set of shared cache units 1906, and the system agent unit
1910/integrated memory controller unit(s) 1917, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 1906 and
cores 1902-A-N.

In some embodiments, one or more of the cores 1902A-N
are capable of multi-threading. The system agent 1910
includes those components coordinating and operating cores
1902A-N. The system agent unit 1910 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1902A-N and the
integrated graphics logic 1908. The display unit is for driving
one or more externally connected displays.

The cores 1902 A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 1902A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set.
Exemplary Computer Architectures

FIGS. 20-23 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 20, shown is a block diagram of a
system 2000 in accordance with one embodiment of the
present invention. The system 2000 may include one or more
processors 2010, 2018, which are coupled to a controller hub
2023. In one embodiment the controller hub 2023 includes a
graphics memory controller hub (GMCH) 2090 and an Input/
Output Hub (IOH) 2050 (which may be on separate chips);
the GMCH 2090 includes memory and graphics controllers to
which are coupled memory 2040 and a coprocessor 2045; the
IOH 2050 is couples input/output (/O) devices 2060 to the
GMCH 2090. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 2040 and the coprocessor
2045 are coupled directly to the processor 2010, and the
controller hub 2023 in a single chip with the IOH 2050.

The optional nature of additional processors 2018 is
denoted in FIG. 20 with broken lines. Each processor 2010,
2018 may include one or more of the processing cores
described herein and may be some version of the processor
1900.

The memory 2040 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 2023 communicates with the processor(s)
2010, 2018 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 2095.

In one embodiment, the coprocessor 2045 is a special-
purpose processor, such as, for example, a high-throughput



US 9,251,377 B2

29

MIC processor, a network or communication processor, com-
pression engine, graphics processor, GPGPU, embedded pro-
cessor, or the like. In one embodiment, controller hub 2023
may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 2010, 2018 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 2010 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 2010 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 2045. Accordingly, the processor
2010 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 2045. Coprocessor(s)
2045 accept and execute the received coprocessor instruc-
tions.

Referring now to FIG. 21, shown is a block diagram of a
first more specific exemplary system 2100 in accordance with
anembodiment of the present invention. As shown in FIG. 21,
multiprocessor system 2100 is a point-to-point interconnect
system, and includes a first processor 2170 and a second
processor 2180 coupled via a point-to-point interconnect
2150. Each of processors 2170 and 2180 may be some version
of the processor 1900. In one embodiment of the invention,
processors 2170 and 2180 are respectively processors 2010
and 2018, while coprocessor 2138 is coprocessor 2045. In
another embodiment, processors 2170 and 2180 are respec-
tively processor 2010 coprocessor 2045.

Processors 2170 and 2180 are shown including integrated
memory controller (IMC) units 2172 and 2182, respectively.
Processor 2170 also includes as part of'its bus controller units
point-to-point (P-P) interfaces 2176 and 2178; similarly, sec-
ond processor 2180 includes P-P interfaces 2186 and 2188.
Processors 2170, 2180 may exchange information via a point-
to-point (P-P) interface 2150 using P-P interface circuits
2178, 2188. As shown in FIG. 21, IMCs 2172 and 2182
couple the processors to respective memories, namely a
memory 2132 and a memory 2134, which may be portions of
main memory locally attached to the respective processors.

Processors 2170, 2180 may each exchange information
with a chipset 2190 via individual P-P interfaces 2152, 2154
using point to point interface circuits 2176, 2194, 2186, 2198.
Chipset 2190 may optionally exchange information with the
coprocessor 2138 via a high-performance interface 2139. In
one embodiment, the coprocessor 2138 is a special-purpose
processor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or
the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 2190 may be coupled to a first bus 2119 via an
interface 2196. In one embodiment, first bus 2119 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 21, various /O devices 2117 may be
coupled to first bus 2119, along with a bus bridge 2121 which
couples first bus 2119 to a second bus 2123. In one embodi-
ment, one or more additional processor(s) 2118, such as

20

25

40

45

55

30

coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 2119. In
one embodiment, second bus 2123 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
2123 including, for example, a keyboard and/or mouse 2122,
communication devices 2127 and a storage unit 2128 such as
a disk drive or other mass storage device which may include
instructions/code and data 2130, in one embodiment. Further,
an audio I/0O 2124 may be coupled to the second bus 2123.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of FIG. 21, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 22, shown is a block diagram of a
second more specific exemplary system 2200 in accordance
with an embodiment of the present invention Like elements in
FIGS. 21 and 22 bear like reference numerals, and certain
aspects of FIG. 21 have been omitted from FIG. 22 in order to
avoid obscuring other aspects of FIG. 22.

FIG. 22 illustrates that the processors 2170, 2180 may
include integrated memory and I/0O control logic (“CL”) 2172
and 2182, respectively. Thus, the CL 2172, 2182 include
integrated memory controller units and include I/O control
logic. FI1G. 22 illustrates that not only are the memories 2132,
2134 coupled to the CL. 2172, 2182, but also that /O devices
2217 are also coupled to the control logic 2172,2182. Legacy
1/0 devices 2218 are coupled to the chipset 2190.

Referring now to FIG. 23, shown is a block diagram of a
SoC 2300 in accordance with an embodiment of the present
invention. Similar elements in FIG. 19 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 23, an interconnect unit(s) 2302
is coupled to: an application processor 2310 which includes a
set of one or more cores 232A-N and shared cache unit(s)
1906; a system agent unit 1910; a bus controller unit(s) 1919;
an integrated memory controller unit(s) 1917; a set or one or
more coprocessors 2323 which may include integrated graph-
ics logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
2330; adirect memory access (DMA)unit 2332; and a display
unit 2340 for coupling to one or more external displays. Inone
embodiment, the coprocessor(s) 2323 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 2130 illustrated in FIG. 21,
may be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if



US 9,251,377 B2

31

desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
Or Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

Emulation (Including Binary Translation, Code Morphing,
Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

FIG. 24 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 24 shows a program in
a high level language 2402 may be compiled using an x86
compiler 2404 to generate x86 binary code 2406 that may be
natively executed by a processor with at least one x86 instruc-
tion set core 2419. The processor with at least one x86 instruc-
tion set core 2419 represents any processor that can perform
substantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core, in

40

45

32

order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. The x86
compiler 2404 represents a compiler that is operable to gen-
erate x86 binary code 2406 (e.g., object code) that can, with or
without additional linkage processing, be executed on the
processor with at least one x86 instruction set core 2419.
Similarly, FIG. 24 shows the program in the high level lan-
guage 2402 may be compiled using an alternative instruction
set compiler 2408 to generate alternative instruction set
binary code 2410 that may be natively executed by a proces-
sor without at least one x86 instruction set core 2417 (e.g., a
processor with cores that execute the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif. and/or that execute
the ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 2415 is used to convert the
x86 binary code 2406 into code that may be natively executed
by the processor without an x86 instruction set core 2417.
This converted code is not likely to be the same as the alter-
native instruction set binary code 2410 because an instruction
converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 2415 represents software,
firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a proces-
sor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary
code 2406.

In the description and claims, the term “logic” may have
been used. As used herein, the term logic may include but is
not limited to hardware, firmware, software, or a combination
thereof. Examples of logic include integrated circuitry, appli-
cation specific integrated circuits, analog circuits, digital cir-
cuits, programmed logic devices, memory devices including
instructions, etc. In some embodiments, the logic may include
transistors and/or gates potentially along with other circuitry
components.

In the description and claims, the terms “coupled” and
“connected,” along with their derivatives, may have been
used. It should be understood that these terms are not intended
as synonyms for each other. Rather, in particular embodi-
ments, “connected” may be used to indicate that two or more
elements are in direct physical or electrical contact with each
other. “Coupled” may mean that two or more elements are in
direct physical or electrical contact. However, “coupled” may
also mean that two or more elements are not in direct contact
with each other, but yet still co-operate or interact with each
other.

The term “and/or” may have been used. As used herein, the
term “and/or” means one or the other or both (e.g., A and/or B
means A or B or both A and B).

In the description above, for the purposes of explanation,
numerous specific details have been set forth in order to
provide a thorough understanding of the embodiments of the
invention. It will be apparent however, to one skilled in the art,
that one or more other embodiments may be practiced with-
out some of these specific details. The particular embodi-
ments described are not provided to limit the invention but to
illustrate it. The scope of the invention is not to be determined
by the specific examples provided above but only by the
claims below. All equivalent relationships to those illustrated
in the drawings and described in the specification are encom-
passed within embodiments of the invention. In other
instances, well-known circuits, structures, devices, and
operations have been shown in block diagram form or without
detail in order to avoid obscuring the understanding of the
description.



US 9,251,377 B2

33

Where considered appropriate, reference numerals or ter-
minal portions of reference numerals have been repeated
among the figures to indicate corresponding or analogous
elements, which may optionally have similar or the same
characteristics unless specified or clearly apparent otherwise.
In some cases, where multiple components have been shown
and described, they may be incorporated into a single com-
ponent. In other cases, where a single component has been
shown and described, it may be separated into two or more
components. In the drawings, arrows represent couplings and
bidirectional arrows represent bidirectional couplings.

Various operations and methods have been described.
Some of the methods have been described in a relatively basic
form in the flow diagrams, but operations may optionally be
added to and/or removed from the methods. In addition, while
the flow diagrams show a particular order of the operations
according to example embodiments, it is to be understood that
that particular order is exemplary. Alternate embodiments
may optionally perform the operations in different order,
combine certain operations, overlap certain operations, etc.
Many modifications and adaptations may be made to the
methods and are contemplated.

It should also be appreciated that reference throughout this
specification to “one embodiment”, “an embodiment”, or
“one or more embodiments”, for example, means that a par-
ticular feature may be included in the practice of the inven-
tion. Similarly, it should be appreciated that in the description
various features are sometimes grouped together in a single
embodiment, Figure, or description thereof for the purpose of
streamlining the disclosure and aiding in the understanding of
various inventive aspects. This method of disclosure, how-
ever, is not to be interpreted as reflecting an intention that the
invention requires more features than are expressly recited in
each claim. Rather, as the following claims reflect, inventive
aspects may lie in less than all features of a single disclosed
embodiment. Thus, the claims following the Detailed
Description are hereby expressly incorporated into this
Detailed Description, with each claim standing on its own as
a separate embodiment of the invention.

What is claimed is:

1. A method performed in a processor, the method com-
prising:

receiving an instruction at a decoder of the processor, the

instruction indicating a first source of a first packed data
including state data elements a,, b,, e;, and f;, but not c,,
for a current round (i) of a secure hash algorithm 2
(SHAZ2) hash algorithm, the instruction also indicating a
second source of a second packed data, wherein the first
packed data has a width in bits that is less than a com-
bined width in bits of eight state data elements the a,, the
b,, the c,, d,, the e, the f,, g;, and h, of the SHA2 hash
algorithm; and

storing a result in a destination indicated by the instruction

in response to the instruction, wherein the destination
comprises a register of the processor, the result including
updated state data elements a,,, b, , e,,, and f;, that have
been updated from the corresponding state data ele-
ments a,, b,, e,, and f, by at least one round of the SHA2
hash algorithm.

2. The method of claim 1, wherein storing comprises stor-
ing updated state data elements a,,,, b,,,, ¢,,,, and f,, , that
have been updated from the corresponding state data ele-
ments a,, b;, e, and f, by two rounds of the SHA2 hash
algorithm.

3. The method of claim 1, wherein storing comprises stor-
ing updated state data elements a,, 4, b,,,, and f,_, that have

10

15

20

25

30

35

40

45

50

55

60

65

34
been updated from the corresponding state data elements a,,
b,, e,, and f, by four rounds of the SHA2 hash algorithm.

4. The method of claim 1, wherein the instruction indicates
as sources only the first and second sources, and wherein the
second packed data includes:

the state data element c;;

the state data element d,;

afirst sum including the state element h, added to a message

input for the current round W(i) added to a constant input
for the current round K(i) added to an evaluation of a Ch
function with the state elements e,, f,, and g, for the
current round added to an evaluation of a Z; function
with the state element e, for the current round; and

a second sum including the state element g, added to a

message input for one round after the current round
W(i+1) added to a constant input for one round after the
current round K(i+1).

5. The method of claim 1, wherein the second packed data
includes the state data elements c;, d;, g;, and h,.

6. The method of claim 5, wherein the instruction indicates
athird source of a third packed data, wherein the third packed
data represents message and constant inputs for the current
round and for one round after the current round.

7. The method of claim 1, wherein storing the result
includes:

storing updated state data elements a,, ,, b;,,, €;,,, and f,,,

that have been updated from the corresponding state data
elements a,, b;, e,, and f, by two rounds of the SHA2 hash
algorithm; and

storing updated state data elements a,, ., b, , 4, €,,4,and f, ,,

that have been updated from the corresponding state data
elements a,, b;, e,, and f; by four rounds of the SHA2 hash
algorithm.

8. The method of claim 1, wherein the first packed data has
only four of the eight state data elements.

9. The method of claim 1, further comprising receiving
another instruction that is to use the state data elements a,, b,,
e, and f; as state data elements c,,,, d,,5, 8., and h,,,,
respectively, wherein the state data elements c,,,, d;,», 2.2,
and h, , , represent the corresponding state data elements ¢, d,,
g;, and h, updated by two rounds of the SHA2 hash algorithm.

10. The method of claim 1, further comprising, in response
to the instruction, for the current round performing operations
comprising:

(a, ROTR 2) XOR (a, ROTR 13) XOR (a, ROTR 22); and

(a;, AND b,) XOR (a, AND ¢,) XOR (a; AND ¢,),

in which ROTR represents a rotate right operation, AND

represents a logical AND operation, and XOR repre-
sents a logical exclusive OR operation.

11. A processor comprising:

a cache;

a plurality of packed data registers;

an instruction fetch unit to receive an instruction that is to

indicate a first source of a first packed data that is to
include state data elements a,, b;, e;, and f;, but not c,, for
a current round (i) of a secure hash algorithm 2 (SHA2)
hash algorithm, and the instruction to also indicate a
second source of a second packed data, wherein the first
packed data is to have a width in bits that is less than a
combined width in bits of eight state data elements the a,,
the b,, the c,, the e, the f,, g,, and h, of the SHA?2 hash
algorithm; and

an execution unit including circuitry coupled with the

packed data registers and the instruction fetch unit, the
execution unit operable to store a result in a destination
indicated by the instruction, wherein the destination is to
comprise a register of the processor, the result to include



US 9,251,377 B2

35

updated state data elements a,,, b,,, e,,, and f,, thatare to
be updated from the corresponding state data elements
a, b,, e, and f; by at least one round of the SHA2 hash
algorithm.

12. The processor of claim 11, wherein the execution unit
is operable, in response to the instruction, to store updated
state data elements a,,,, b,,,, e,,,, and f,,, that are to be
updated from the corresponding state data elements a,, b,, e,,
and £, by two rounds of the SHA2 hash algorithm.

13. The processor of claim 11, wherein the execution unit
is operable, in response to the instruction, to store updated
state data elements a,,,, b;,,, €,,4, and f,,, that are to be
updated from the corresponding state data elements a,, b,, e,,
and £, by four rounds of the SHA2 hash algorithm.

14. The processor of claim 11, wherein the instruction is to
indicate as sources only the first and second sources, and
wherein the second packed data is to include:

the state data element c;;

the state data element d;;

a first sum that is to include the state element h, added to a
message input for the current round W(i) added to a
constant input for the current round K(i) added to an
evaluation of a Ch function with the state elements e, f,,
and g, for the current round added to an evaluation ofa X,
function with the state element e, for the current round;
and

a second sum that is to include the state element g, added to
a message input for one round after the current round
W(i+1) added to a constant input for one round after the
current round K(i+1).

15. The processor of claim 11, wherein the second packed

data includes the state data elements c,, d,, g,, and h,.

16. The processor of claim 15, wherein the instruction
indicates a third source of a third packed data, wherein the
third packed data represents message and constant inputs for
the current round and for one round after the current round.

17. The processor of claim 11, wherein storing the result
includes:

storing updated state data elements a,, 5, b;,,, €,,,, and f,,,
that have been updated from the corresponding state data
elements a,, b,, ¢;, and f, by two rounds ofthe SHA2 hash
algorithm; and

storing updated state data elements a,, ,, b, 4, €,,4, and f, ,,
that have been updated from the corresponding state data
elements a,, b,, e,, and f; by four rounds of the SHA2 hash
algorithm.

18. The processor of claim 11, wherein the first packed data

is to include only four of the eight state data elements.

19. The processor of claim 11, wherein the execution unit
is operable, in response to the instruction, to perform opera-
tions comprising:

(a, ROTR 2) XOR (a, ROTR 13) XOR (a, ROTR 22); and

(a; AND b,) XOR (a; AND ¢,) XOR (a; AND c,),

in which ROTR represents a rotate right operation, AND
represents a logical AND operation, and XOR repre-
sents a logical exclusive OR operation.

20. A system comprising:

an interconnect;

a processor including circuitry coupled with the intercon-
nect, the processor to receive an instruction of an instruc-
tion set of the processor that is to indicate a first source
ofa first packed data that is to include state data elements
a,, b, e, and f, but not c, for a current round (i) of a
secure hash algorithm 2 (SHA2) hash algorithm, the
instruction also to indicate a second source of a second
packed data, wherein the first packed data is to have a
width in bits that is less than a combined width in bits of

15

20

25

30

40

45

60

36

eight state data elements of the SHA2 hash algorithm,
the processor operable, in response to the instruction, to
store a result in a destination indicated by the instruction,
wherein the destination is to comprise a register of the
processor, the result to include updated state data ele-
mentsb,,, b,,, e,,, and f,, that are to be updated from the
corresponding state data elements a,, b;, e,, and f; by at
least one round of the SHA?2 hash algorithm; and

a dynamic random access memory (DRAM) coupled with
the interconnect.

21. The system of claim 20, wherein the processor is oper-
able, in response to the instruction, to store updated state data
elements a,,,, b,,,, €,,,, and f,,, that are to be updated from
the corresponding state data elements a,, b,, e,, and f, by two
rounds of the SHA2 hash algorithm.

22. The system of claim 20, wherein the second packed
data is to include:

the state data element c;;

a state data element d;;

a first sum that is to include a state element h, added to a
message input for the current round W(i) added to a
constant input for the current round K(i) added to an
evaluation of a Ch function with state elements e,, f,, and
g, for the current round added to an evaluation of a X,
function with the state element e, for the current round;
and

a second sum that is to include a state element g, added to
a message input for one round after the current round
W(i+1) added to a constant input for one round after the
current round K(i+1).

23. An article of manufacture comprising:

a tangible non-transitory machine-readable storage
medium, the tangible non-transitory machine-readable
storage medium storing an instruction,

the instruction to indicate a first source of a first packed
data including state data elements a,, b,, e;, and f,, but not
c,, for a current round (i) of a secure hash algorithm 2
(SHAZ2) hash algorithm, the instruction also to indicate a
second source of a second packed data, wherein the first
packed data is to have a width in bits that is less than a
combined width in bits of eight state data elements ofthe
SHAZ2 hash algorithm, and

the instruction if executed by a machine operable to cause
the machine to perform operations comprising storing a
result in a destination to be indicated by the instruction,
the result including updated state data elements a,,, b,,,
e,,, and f,, that have been updated from the correspond-
ing state data elements a,, b;, e,, and f; by at least one
round of the SHA?2 hash algorithm.

24. The article of claim 23, wherein the processor is oper-
able, in response to the instruction, to store updated state data
elements a,,,, b,,,, €,,,, and f, , that are to be updated from
the corresponding state data elements a,, b,, e,, and f, by two
rounds of the SHA2 hash algorithm.

25. The article of claim 23, wherein the second packed data
is to include:

the data element c;;

a state data element d;;

a first sum that is to include a state element h, added to a
message input for the current round W(i) added to a
constant input for the current round K(i) added to an
evaluation of a Ch function with state elements e,, f,, and
g, for the current round added to an evaluation of a X,
function with the state element e, for the current round;
and



US 9,251,377 B2

37

a second sum that is to include a state element g, added to
a message input for one round after the current round
W(i+1) added to a constant input for one round after the
current round K(i+1).

26. An apparatus comprising:

a cache;

a plurality of packed data registers;

a decoder to decode an instruction that is to indicate a first

source of a first packed data that is to include state data
elements g, and h, for a current round (i) of a secure hash
algorithm 2 (SHA2) hash algorithm, wherein the first
packed data is to have a width in bits that is less than a
combined width in bits of eight state data elements a,, b,,
c,,d,, e, T, theg, and theh, of the SHA?2 hash algorithm,
and the instruction to indicate a second source of a
second packed data that is to represent message and
constant inputs for the current round and for one round
after the current round, wherein at least one of the first
source and the second source are to include the state data
elements e; and f;;

an execution unit including circuitry coupled with the plu-

rality of the packed data registers and the decoder, the
execution unit operable to store a result in a destination
indicated by the instruction, wherein the destination is to
comprise a register of the apparatus, the result to
include:

10

15

20

38

a first sum that is to include the state element h, added to a
message input for the current round (W(i)) added to a
constant input for the current round (K(i)) added to an
evaluation of a Ch function with the state elements e,, f,,

and g, for the current round added to an evaluationofaX,
function with the state element e, for the current round;
and

a second sum thatis to include the state element g, added to
a message input for one round after the current round
W(i+1) added to a constant input for one round after the
current round K(i+1).

27. The apparatus of claim 26, wherein the first packed data
is to include the state data element d,.

28. The apparatus of claim 26, wherein the first packed data
is to include the state data element e, and the state data ele-
ment f,.

29. The apparatus of claim 26, wherein the execution unit
is operable to store two additional state data elements from
the first packed data to the result.

30. The apparatus of claim 26, wherein the width in bits of
the first packed data is half the combined width in bits of the
eight state data elements, and wherein the instruction indi-
cates as sources only the first and second sources.

#* #* #* #* #*



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,251,377 B2 Page 1of1
APPLICATION NO. - 13/729502

DATED : February 2, 2016

INVENTOR(S) : Gilbert M. Wolrich et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims,

In column 33, line 67, in claim 3, delete “b;.4,” and insert -- b;.4, €;:4, --, therefor.

In column 33, line 67, in claim 3, delete “f;,,” and insert -- ;.4 --, therefor.

In column 34, line 14, in claim 4, delete “g,” and insert -- g; --, therefor.

In column 34, line 30, in claim 7, delete “f;,,” and insert -- ;.4 --, therefor.

In column 33, line 43, in claim 17, delete “f, .4~ and insert -- fi,4 --, therefor.

In column 36, line 6, in claim 20, delete “b;.,” and insert --a i1, --, therefor. (first occurrence)
In column 36, line 21, in claim 22, delete “h,” and insert -- h; --, therefor.

In column 36, line 28, in claim 22, delete “g,” and insert -- g; --, therefor.

In column 36, line 61, in claim 25, delete “h,” and insert -- h; --, therefor.

In column 37, line 10, in claim 26, delete “g, and h,” and insert -- g; and h; --, therefor.

(13 2

In column 38, line &, in claim 26, delete “g,” and insert -- g; --, therefor.

Signed and Sealed this
Twenty-sixth Day of July, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office



